Development and Characterization of an Iot Network for Agricultural Imaging Applications
Total Page:16
File Type:pdf, Size:1020Kb
DEVELOPMENT AND CHARACTERIZATION OF AN IOT NETWORK FOR AGRICULTURAL IMAGING APPLICATIONS A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering by Jacob Wahl June 2020 © 2020 Jacob Wahl ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Development and Characterization of an IoT Network for Agricultural Imaging Applications AUTHOR: Jacob Wahl DATE SUBMITTED: June 2020 COMMITTEE CHAIR: Jane Zhang, Ph.D. Professor / Graduate Coordinator Department of Electrical Engineering COMMITTEE MEMBER: Vladimir Prodanov, Ph.D. Associate Professor Department of Electrical Engineering COMMITTEE MEMBER: Bridget Benson, Ph.D. Associate Professor Department of Electrical Engineering iii ABSTRACT Development and Characterization of an IoT Network for Agricultural Imaging Applications Jacob Wahl Smart agriculture is an increasingly popular field in which the technology of wireless sensor networks (WSN) has played a large role. Significant research has been done at Cal Poly and elsewhere to develop a computer vision (CV) and machine learning (ML) pipeline to monitor crops and accurately predict crop yield numbers. By autonomously providing farmers with this data, both time and money are saved. During the past development of a prediction pipeline, the primary focuses were CV and ML processing while a lack of attention was given to the collection of quality image data. This lack of focus in previous research presented itself as incomplete and inefficient processing models. This thesis work attempts to solve this image acquisition problem through the initial development and design of an Internet of Things (IoT) prototype network to collect consistent image data with no human interaction. The system is developed with the goals of being low-power, low-cost, autonomous, and scalable. The proposed IoT network nodes are based on the ESP32 SoC and communicate over-the-air with the gateway node via Bluetooth Low Energy (BLE). In addition to BLE, the gateway node periodically uplinks image data via Wi-Fi to a cloud server to ensure the accessibility of collected data. This research develops all functionality of the network, comprehensively characterizes the power consumption of IoT nodes, and provides battery life estimates for sensor nodes. The sensor node developed consumes a peak current of 150mA in its active state and sleeps at 162µA in its standby state. Node-to-node BLE data transmission throughput of 220kbps and node-to- cloud Wi-Fi data transmission throughput of 709.5kbps is achieved. Sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day. This network can be utilized by any application that requires a wireless sensor network (WSN), high data rates, low power consumption, short range communication, and large amounts of data to be transmitted at low frequency intervals. Keywords: Internet of Things (IoT), ESP32, Sensor Node, Gateway Node, Bluetooth Low Energy (BLE) iv ACKNOWLEDGMENTS First and foremost, I would like to endlessly thank my parents and sisters for their constant love and for promoting the importance of education. I would like to thank my advisor, Dr. Zhang, for offering support throughout this process and suggesting this topic to me. Thank you to Dr. Prodanov for recommending the development board used in this thesis and for valuable suggestions throughout my development process. Thank you to Dr. Benson for providing critical and constructive feedback of my paper. I would like to thank my close friends Avery, Donald, Elysa, Faye, Jennie, Madi, and Sarah for the friendship and encouragement over the past five years. You all truly made Cal Poly a home and a wonderful place to learn, and I cannot thank you enough. A final thanks goes to my graduate cohort that has persevered through the last five years of school together, always providing support rather than competition. v TABLE OF CONTENTS Page LIST OF TABLES .......................................................................................................................................... x LIST OF FIGURES ........................................................................................................................................ xi 1. INTRODUCTION ....................................................................................................................................... 1 1.1 Background and Overview .................................................................................................................... 1 1.1.1 Technology in Agriculture ............................................................................................................. 1 1.1.2 Motivation ...................................................................................................................................... 1 1.1.3 Significance of Quality Data .......................................................................................................... 3 1.2 Statement of Problem ............................................................................................................................ 4 1.3 IoT Background ..................................................................................................................................... 4 1.4 Scope of Work ....................................................................................................................................... 5 2. LITERATURE REVIEW ............................................................................................................................ 7 2.1 Vinduino ................................................................................................................................................ 7 2.1.1 Overview ........................................................................................................................................ 7 2.1.2 Analysis .......................................................................................................................................... 9 2.2 Long-range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop Topology ................................................................................................................................................... 10 2.2.1 Overview ...................................................................................................................................... 10 2.2.2 Analysis ........................................................................................................................................ 11 2.3 Smart Agriculture Farming with Image Capturing Module ................................................................ 12 2.3.1 Overview ...................................................................................................................................... 12 2.3.2 Analysis ........................................................................................................................................ 13 3. PRELIMINARY SYSTEM DESIGN ....................................................................................................... 14 vi 3.1 System Goals ....................................................................................................................................... 14 3.2 Wireless Communication .................................................................................................................... 15 3.2.1 LPWAN: LoRa and SigFox .......................................................................................................... 16 3.2.2 PAN: ZigBee and Bluetooth Low Energy .................................................................................... 16 3.2.3 Summary of Wireless Communication Technologies .................................................................. 17 3.3 Hardware Case Studies ........................................................................................................................ 18 3.3.1 Arduino Nano 33 BLE.................................................................................................................. 18 3.3.2 Particle Argon............................................................................................................................... 18 3.3.3 Espressif ESP32 SoC .................................................................................................................... 19 3.3.4 Hardware Summary ...................................................................................................................... 20 3.4 Final Design Summary ........................................................................................................................ 20 4. HARDWARE OVERVIEW...................................................................................................................... 22 4.1 ArduCAM IoTai Development Board ................................................................................................. 22 4.2 Espressif ESP32 SoC ........................................................................................................................... 24 4.3 OV2640 Image Sensor ........................................................................................................................ 25 4.4 Other Considerations ..........................................................................................................................