Model-Based, Event-Driven Programming Paradigm for Interactive Web Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Empirical Study on Program Comprehension with Reactive Programming
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016, Lecture Notes in Informatics (LNI), Gesellschaft fur¨ Informatik, Bonn 2016 69 An Emirical Study on Program Comrehension with Reactive Programming Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini1 Abstract: Starting from the first investigations with strictly functional languages, reactive programming has been proposed as the programming paradigm for reactive applications. The advantages of designs based on this style overdesigns based on the Observer design pattern have been studied for along time. Over the years, researchers have enriched reactive languages with more powerful abstractions, embedded these abstractions into mainstream languages –including object-oriented languages –and applied reactive programming to several domains, likeGUIs, animations, Webapplications, robotics, and sensor networks. However, an important assumption behind this line of research –that, beside other advantages, reactive programming makes awide class of otherwise cumbersome applications more comprehensible –has neverbeen evaluated. In this paper,wepresent the design and the results of the first empirical study that evaluates the effect of reactive programming on comprehensibility compared to the traditional object-oriented style with the Observer design pattern. Results confirm the conjecture that comprehensibility is enhanced by reactive programming. In the experiment, the reactive programming group significantly outperforms the other group. Keywords: Reactive Programming, Controlled -
Design of Instructional Modeling Language for Learning Objects and Learning Objects╎ Repositories
University of Northern Colorado Scholarship & Creative Works @ Digital UNC Dissertations Student Research 8-2019 Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories Altaf Siddiqui Follow this and additional works at: https://digscholarship.unco.edu/dissertations Recommended Citation Siddiqui, Altaf, "Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories" (2019). Dissertations. 588. https://digscholarship.unco.edu/dissertations/588 This Text is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Dissertations by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. ©2019 ALTAF SIDDIQUI ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School DESIGN OF INSTRUCTIONAL MODELING LANGUAGE FOR LEARNING OBJECTS AND LEARNING OBJECTS’ REPOSITORIES A Capstone Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy Altaf Siddiqui College of Education and Behavioral Sciences Department of Educational Technology August 2019 This Capstone by: Altaf Siddiqui Entitled: Design of Instructional Modeling Language for Learning Objects and Learning Objects Repositories has been approved as meeting the requirement for the Degree of Doctor of Audiology in College of Education and Behavioral Sciences in Department of Educational Technology -
Flapjax: Functional Reactive Web Programming
Flapjax: Functional Reactive Web Programming Leo Meyerovich Department of Computer Science Brown University [email protected] 1 People whose names should be before mine. Thank you to Shriram Krishnamurthi and Gregory Cooper for ensuring this project’s success. I’m not sure what would have happened if not for the late nights with Michael Greenberg, Aleks Bromfield, and Arjun Guha. Peter Hopkins, Jay McCarthy, Josh Gan, An- drey Skylar, Jacob Baskin, Kimberly Burchett, Noel Welsh, and Lee Butterman provided invaluable input. While not directly involved with this particular project, Kathi Fisler and Michael Tschantz have pushed me along. 1 Contents 4.6. Objects and Collections . 32 4.6.1 Delta Propagation . 32 1. Introduction 3 4.6.2 Shallow vs Deep Binding . 33 1.1 Document Approach . 3 4.6.3 DOM Binding . 33 2. Background 4 4.6.4 Server Binding . 33 2.1. Web Programming . 4 4.6.5 Disconnected Nodes and 2.2. Functional Reactive Programming . 5 Garbage Collection . 33 2.2.1 Events . 6 2.2.2 Behaviours . 7 4.7. Evaluations . 34 2.2.3 Automatic Lifting: Transparent 4.7.1 Demos . 34 Reactivity . 8 4.7.2 Applications . 34 2.2.4 Records and Transparent Reac- 4.8 Errors . 34 tivity . 10 2.2.5 Behaviours and Events: Conver- 4.9 Library vs Language . 34 sions and Event-Based Derivation 10 4.9.1 Dynamic Typing . 34 4.9.2 Optimization . 35 3. Implementation 11 3.1. Topological Evaluation and Glitches . 13 4.9.3 Components . 35 3.1.1 Time Steps . 15 4.9.4 Compilation . -
Integration Definition for Function Modeling (IDEF0)
NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance, -
Design and Implementation of the L+C Modeling Language
Design and implementation of the L+C modeling language Radoslaw Karwowski and Przemyslaw Prusinkiewicz Department of Computer Science University of Calgary Abstract L-systems are parallel grammars that provide a theoretical foundation for a class of programs used in procedural image synthesis and simulation of plant development. In particular, the formalism of L-systems guides the construction of declarative languages for specifying input to these programs. We outline key factors that have motivated the development of L-system- based languages in the past, and introduce a new language, L+C, that addresses the shortcom- ings of its predecessors. We also describe the implementation of L+C, in which an existing language, C++, was extended with constructs specific to L-systems. This implementation methodology made it possible to develop a powerful modeling system in a relatively short pe- riod of time. 1. Background L-systems were conceived as a rule-based formalism for reasoning on developing multicellular organisms that form linear or branching filaments [Lindenmayer, 1968]. Soon after their introduction, L-systems also began to be used as a foundation of visual modeling and simulation programs, and computer languages for specifying the models [Baker and Herman, 1972]. Subsequently they also found applications in the generation of fractals [Szilard and Quinton, 1979; Prusinkiewicz, 1986] and geometric modeling [Prusinkiewicz et al., 2003]. A common factor uniting these diverse applications is the treatment of structure and form as a result of development. A historical perspective of the L-system-based software and its practical applications is presented in [Prusinkiewicz, 1997]. According to the L-system approach, a developing structure is represented by a string of symbols over a predefined alphabet V. -
On the Analysis of Cmmn Expressiveness: Revisiting Workflow Patterns
' $ ON THE ANALYSIS OF CMMN EXPRESSIVENESS: REVISITING WORKFLOW PATTERNS Renata Carvalho 1, Anis Boubaker 1, Javier Gonzalez-Huerta 1, Hafedh Mili 1, Simon Ringuette 2, and Yasmine Charif 3 Mars 2016 D´epartement d'informatique Universit´edu Qu´ebec `aMontr´eal Rapport de recherche Latece 2016-1 & % ON THE ANALYSIS OF CMMN EXPRESSIVENESS: REVISITING WORKFLOW PATTERNS Renata Carvalho 1, Anis Boubaker 1, Javier Gonzalez- Huerta 1, Hafedh Mili 1, Simon Ringuette 2, and Yasmine Charif 3 1 D´epartement d'informatique UQAM Montr´eal,Qc, Canada 2 Trisotech Inc. Montr´eal,Qc, Canada 3 Xerox Innovation Group Xerox Research Center Webster Mailstop 128-29E Laboratoire de recherche sur les technologies du commerce ´electronique D´epartement d'informatique Universit´edu Qu´ebec `aMontr´eal C.P. 8888, Succ. Centre-Ville Montr´eal,QC, Canada H3C 3P8 http://www.latece.uqam.ca Mars 2016 Rapport de recherche Latece 2016-1 Summary Traditional business process modeling languages use an imperative style to specify all possible execution flows, leaving little flexibility to process operators. Such lan- guages are appropriate for low-complexity, high-volume, mostly automated processes. However, they are inadequate for case management, which involves low-volume, high- complexity, knowledge-intensive work processes of today's knowledge workers. OMG's Case Management Model and Notation(CMMN), which uses a declarative stytle to specify constraints placed at a process execution, aims at addressing this need. To the extent that typical case management situations do include at least some measure of imperative control, it is legitimate to ask whether an analyst working exclusively in CMMN can comfortably model the range of behaviors s/he is likely to encounter. -
System Model-Based Definition of Modeling Language Semantics In: Proc
System Model-Based Definition of Modeling Language Semantics Hans Gr¨onniger, Jan Oliver Ringert, and Bernhard Rumpe Lehrstuhl Informatik 3 (Softwaretechnik), RWTH Aachen, Germany Abstract. In this paper, we present an approach to define the seman- tics for object-oriented modeling languages. One important property of this semantics is to support underspecified and incomplete models. To this end, semantics is given as predicates over elements of the seman- tic domain. This domain is called the system model which is a general declarative characterization of object systems. The system model is very detailed since it captures various relevant structural, behavioral, and in- teraction aspects. This allows us to re-use the system model as a domain for various kinds of object-oriented modeling languages. As a major con- sequence, the integration of language semantics is straight-forward. The whole approach is supported by tools that do not constrain the seman- tics definition’s expressiveness and flexibility while making it machine- checkable. 1 Introduction Modeling is an integral part of complex software system development projects. The purpose of models ranges from assisting developers and customers commu- nicate to test case generation or (automatic) derivation of the developed system. A prominent example modeling language is UML [1]. Actually, it is a family of languages used to model various aspects of a software system. While UML is widely used, domain specific modeling languages emerged recently that allow developers and even customers to express solutions to well-defined problems in aconciseway. A complete definition of a modeling language consists of the description of its syntax, including well-formedness rules and its semantics (meaning) [2]. -
System Structure Modeling Language (S2ML) Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy
System Structure Modeling Language (S2ML) Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy To cite this version: Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. System Structure Modeling Language (S2ML). 2015. hal-01234903 HAL Id: hal-01234903 https://hal.archives-ouvertes.fr/hal-01234903 Preprint submitted on 1 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. System Structure Modeling Language (S2ML) Language Specification Version 1.0 November 2015 Abstract: This document defines the S2ML language, version 1.0. S2ML is developed in the framework of the OpenAltaRica project, leaded by IRT SystemX, Palaiseau, France. S2ML is a freely available, prototype-oriented language for both representing the structure complex systems and structuring models of these systems. It aims at providing a minimal but sufficient set of constructs for these purposes. S2ML 1.0 Specification 2 Copyright © AltaRica Association, 2015 All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e. this document can be freely distributed especially electronically, provided the copyright notice and these conditions are retained. No patent liability is assumed with respect to the use of information contained herein. While every precaution has been taken in the preparation of this document, no responsibility for errors or omissions is assumed. -
Characterizing Callbacks in Javascript
Don’t Call Us, We’ll Call You: Characterizing Callbacks in JavaScript Keheliya Gallaba Ali Mesbah Ivan Beschastnikh University of British Columbia University of British Columbia University of British Columbia Vancouver, BC, Canada Vancouver, BC, Canada Vancouver, BC, Canada [email protected] [email protected] [email protected] Abstract—JavaScript is a popular language for developing 1 var db = require(’somedatabaseprovider’); web applications and is increasingly used for both client-side 2 http.get(’/recentposts’, function(req, res){ and server-side application logic. The JavaScript runtime is 3 db.openConnection(’host’, creds, function(err, conn){ inherently event-driven and callbacks are a key language feature. 4 res.param[’posts’]. forEach(function(post) { 5 conn.query(’select * from users where id=’ + post Unfortunately, callbacks induce a non-linear control flow and can [’user’], function(err, results){ be deferred to execute asynchronously, declared anonymously, 6 conn.close(); and may be nested to arbitrary levels. All of these features make 7 res.send(results[0]); callbacks difficult to understand and maintain. 8 }); 9 }); We perform an empirical study to characterize JavaScript 10 }); callback usage across a representative corpus of 138 JavaScript 11 }); programs, with over 5 million lines of JavaScript code. We Listing 1. A representative JavaScript snippet illustrating the comprehension find that on average, every 10th function definition takes a and maintainability challenges associated with nested, anonymous callbacks callback argument, and that over 43% of all callback-accepting and asynchronous callback scheduling. function callsites are anonymous. Furthermore, the majority of callbacks are nested, more than half of all callbacks are asynchronous, and asynchronous callbacks, on average, appear more frequently in client-side code (72%) than server-side (55%). -
Elmulating Javascript
Linköping University | Department of Computer science Master thesis | Computer science Spring term 2016-07-01 | LIU-IDA/LITH-EX-A—16/042--SE Elmulating JavaScript Nils Eriksson & Christofer Ärleryd Tutor, Anders Fröberg Examinator, Erik Berglund Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Abstract Functional programming has long been used in academia, but has historically seen little light in industry, where imperative programming languages have been dominating. This is quickly changing in web development, where the functional paradigm is increas- ingly being adopted. While programming languages on other platforms than the web are constantly compet- ing, in a sort of survival of the fittest environment, on the web the platform is determined by the browsers which today only support JavaScript. JavaScript which was made in 10 days is not well suited for building large applications. A popular approach to cope with this is to write the application in another language and then compile the code to JavaScript. Today this is possible to do in a number of established languages such as Java, Clojure, Ruby etc. but also a number of special purpose language has been created. These are lan- guages that are made for building front-end web applications. One such language is Elm which embraces the principles of functional programming. In many real life situation Elm might not be possible to use, so in this report we are going to look at how to bring the benefits seen in Elm to JavaScript. Acknowledgments We would like to thank Jörgen Svensson for the amazing support thru this journey. -
A Runtime Assertion Checker for the Java Modeling Language Yoonsik Cheon Iowa State University
Computer Science Technical Reports Computer Science 4-2003 A Runtime Assertion Checker for the Java Modeling Language Yoonsik Cheon Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Software Engineering Commons Recommended Citation Cheon, Yoonsik, "A Runtime Assertion Checker for the Java Modeling Language" (2003). Computer Science Technical Reports. 308. http://lib.dr.iastate.edu/cs_techreports/308 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Runtime Assertion Checker for the Java Modeling Language Abstract JML compiler to translate Java programs annotated with JML specifications into Java bytecode. The ompc iled bytecode transparently checks JML specifications at runtime. The JML ompc iler supports separate and modular compilation. The ppra oach brings programming benefits uchs as debugging and testing to BISLs and also helps programmers to use BISLs in their daily programming. A set of translation rules are defined from JML expressions into assertion checking code. The translation rules handle various kinds of undefinedness, such as runtime exceptions and non-executable constructs, in such a way as to both satisfy the standard rules of logic and detect as many assertion violations as possible. The rules also support various forms of quantifiers. Specification-only declarations such as model fields, ghost fields, and model methods are translated into access methods; e.g., an access method for a model field is an abstraction function that calculates an abstract value from the program state. -
Conceptual Modeling of Time for Computational Ontologies
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020 1 Conceptual Modeling of Time for Computational Ontologies Sabah Al-Fedaghi [email protected] Computer Engineering Department, Kuwait University, Kuwait 1.1 Ontologies and Conceptual Modeling Summary To provide a foundation for conceptual modeling, To provide a foundation for conceptual modeling, ontologies have been introduced to specify the entities, the ontologies have been introduced to specify the entities, the existences of which are acknowledged in the model [4]. existences of which are acknowledged in the model. Conceptual modeling involves “representing aspects of the Ontologies are essential components as mechanisms to world for the purpose of understanding and communication model a portion of reality in software engineering. In this context, a model refers to a description of objects and [, and hence] the contribution of a conceptual modeling notation rests in its ability to promote understanding about processes that populate a system. Developing such a description constrains and directs the design, development, the depicted reality among human users” [5]. Conceptualization refers to abstracting a given portion of and use of the corresponding system, thus avoiding such difficulties as conflicts and lack of a common reality that “exists beyond our concepts” [6], i.e., entities and processes that “exist” in the domain of the modeled understanding. In this cross-area research between modeling and ontology, there has been a growing interest system (note that what there may not be what exists – see [7]). It is also stated that ontology is “an explicit in the development and use of domain ontologies (e.g., Resource Description Framework, Ontology Web specification of a conceptualization” [8].