Meta-Modeling and Modeling Languages

Total Page:16

File Type:pdf, Size:1020Kb

Meta-Modeling and Modeling Languages member of Meta-Modeling and Modeling Languages Prof. Dr. Knut Hinkelmann Prof. Dr. Knut Hinkelmann Models and Modelling Model A reproduction of the part of reality which contains the essential aspects to be investigated. Modelling Describing and Representing all relevant aspects of a domain in a defined language. Result of modelling is a model. Prof. Dr. Knut Hinkelmann Metamodel and Modeling2 Languages Model in Architecture real object model house architect’s drawing (plan) Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 3 Model and Modeling Language in Architecture real object model modeling language (concrete syntax) object types: wall door window house architect’s drawing (plan) Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 4 Modelling Language ■ A modelling "language" specifies the building blocks (elements) from which a model can be made. ■ There can be different types of created with Modelling Model modelling languages, depending Language on the kind of model indirect model of ♦ graphical model Reality ♦ textual description ♦ mathematical model ♦ conceptual model ♦ physical model Metamodel and Modeling Languages Prof. Dr. Knut Hinkelmann 5 Modeling Model Language Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 6 Model and Meta-Model in Architecture real object model modeling language meta-model (concrete syntax) (abstract syntax) object types: object types: • wall wall • door • window door rules: • a door is adjacent to window a wall on both sides • Windows are on outer walls. house architect’s drawing (plan) Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 7 Meta-model A meta-model defines the semantics of the modelling language, i.e. the building blocks that can be used to Meta-model make a model. It defines the direct model of indirect ♦ object types that can be used model of to represent a model ♦ relations between object types created with Modelling Model ♦ attributes of the object types Language model of ♦ rules to combine object types and relations Reality ■ The meta-model is the abstract syntax, the modeling language is the concrete syntax. Metamodel and Modeling Languages Prof. Dr. Knut Hinkelmann 8 Meta Model vs Model Language = Abstract vs. Concrete Syntax Abstract Syntax Concrete Syntax ■ Deep structure of a ■ Surface level of a language. language. ■ What does the expression ■ What are the significant look like? parts of the expression? ■ Example: a sum expression has two operand expressions as its significant parts http://www.cse.chalmers.se/edu/year/2011/course/TIN321/lectures/proglang-02.html Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 9 Metamodel and Modeling Language Metamodel ■ The metamodel is a model of a model. It defines the modeling elements (concepts, relations, constraints) without specifying the layout and notation ■ The metamodel corresponds to the abstract syntax Modeling language ■ The modeling language defines the notation/appearance of the modeling elements ■ The modeling language corresponds to the concrete syntax Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 10 Illustration: Meta-model and Model for Processes Metamodel: Model: Abstract syntax: Concepts which can be used to create models. Example: A process model consists of concepts for Modeling • «task», «subprocess», Language: «event», «gateway», Concrete syntax: «data object» Notation/appearance of • «sequence flow», A model contains instances of the «data association». meta-model elements object types defined in the meta- The elements have model, according to the concrete attributes and there are task syntax of the modeling language. rules how the elements subprocess The object „confirm order“ can be combined. represents a real entity; it is an event instance of the object type «task" gateway data object sequence flow data association Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 11 Components of Modeling Methods A Modeling Language is Part of a Modeling Modeling A Modeling Language consists of the Metamodel (Syntax and Semantics) and the Notation Metamodel Concrete (Karagiannis & Kühn 2002) Syntax Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 12 Meta Model Hierarchy The meta-model must again be described in some language, which has to be specified in a meta-meta-model Language Level Models Language Name created with Meta2-Modelling Level 3 Meta2-Model Language indirect direct model of model of Level 2 Metamodel created with Metamodelling Language indirect direct model of model of created with Modelling Level 1 Model Language model of Reality Karagiannis, D. & Kühn, H., 2002. Metamodelling Platforms. In K. Bauknecht, A. Min Tjoa, & G. Quirchmayer, eds. Proceedings of the Third International Conference EC-Web at DEXA 2002. Berlin: Springer-Verlag. Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 13 The Model Stack describes ■ A model is a simplified M3: meta-meta-model representation of a reality ■ A meta-model defines a describes instance of modeling language in which a M2: meta-model model can be expressed. ■ A meta-meta model defines the describes instance of language in which a meta- M1: model model can be expressed. describes instance of M0: Reality Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 14 Domain-specific vs. General-purpose Modeling Languages ■ Domain-specific languages are notations which are defined to model knowledge about a specific domain ■ General-purpose modeling languages can be used to represent any kind of knowledge Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 15 Domain-specific Modeling Languages ■ Domain-specific modeling languages have modeling elements for typical concepts and relations of a domain of discourse ♦ Predefined classes, relations and constraints ♦ Specific shapes for modeling elements and relations ■ Modeling means to create instances of theses classes and relations Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 16 Domain-specific Modeling Languages ■ Domain-specific modeling languages correspond to model kinds which have modeling elements for concepts and relations to represent specific views ■ Examples of domain-specific modeling languages: ♦ BPMN is a domain-specific language for business processes ● Modeling elements: task, event, gateway, …. ● relations: sequence flow, message flow, data association, … ♦ ArchiMate is a domain-specific language for enterprise architectures ● Modeling elements: process, actor, role, business object, … ● relations: uses, realizes, … ♦ BMM is a domain-specific language for business motivation ● Modeling elements: vision, mission, goal, strategy, influencer, … ● relations: judges, channels efforts, … Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 17 A Business Process Model and Metamodel Modeling Language Flow object event subclass of activity gateway subclass of data object subclass of subclass of instance of start event end event task subprocess instance of instance of instance of instance of instance of instance of order ship procure goods on order processed confirmation confirm goods goods stock? arrived triggers order has name output "Confirm order" Model Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 18 Metamodels can be defined as Class Diagrams To model a metamodel one can use (a subset of) UML class diagrams (UML Class diagrams where originally designed for modeling in object-oriented programming. This is why they contain operations and other features, which are not relevant for most modeling languages) Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 19 A Domain-specific Metamodel for Processes Meta-model: • Classes and relations that can Model: be used for modeling • Abstract syntax and semantics Modeling Language: Concrete Syntax (notation, appearance) of meta-model A model contains instances of the elements object types defined in the meta- model, according to the concrete task Example: A process model syntax of the modeling language. consists of object types for The object „confirm order“ • «task», «subprocess», subprocess represents a real entity; it is an «event», «gateway», event «data object» instance of the object type «task" • «sequence flow», gateway «data association». The elements have data object attributes and there are rules how the elements sequence flow can be combined. data association Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 20 Subset of the BPMN Metamodel in UML Source: BPMN 2.0 specification Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 21 Strengths and Weaknesses of Domain Modeling Languages ■ Strengths ♦ Comprehensiblity of models ● elements and relations are adequate for stakeholders ● domain-specific shapes ♦ Reuse of models ● domain-language can be standardized (e.g. BPMN, ArchiMate) ■ Weaknesses ♦ Restricted to a specific domain ● Only what can be expressed with the modeling elements can be modeled Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 22 What do we do if there is no Domain-specific Modelling Language ■ If there is no domain-specific modelling language for a domain of interest, we have two options 1. Define a new domain-specific modelling language ● meta model ● modeling language 2. Use a general-purpose modeling language Prof. Dr. Knut Hinkelmann Metamodel and Modeling Languages 23 General-purpose Modeling Languages ■ General-purpose modeling languages can be used to represent any kind of knowledge ■ They can be used, if no domain-specific modeling language is available (for a view)
Recommended publications
  • Powerdesigner 16.6 Data Modeling
    SAP® PowerDesigner® Document Version: 16.6 – 2016-02-22 Data Modeling Content 1 Building Data Models ...........................................................8 1.1 Getting Started with Data Modeling...................................................8 Conceptual Data Models........................................................8 Logical Data Models...........................................................9 Physical Data Models..........................................................9 Creating a Data Model.........................................................10 Customizing your Modeling Environment........................................... 15 1.2 Conceptual and Logical Diagrams...................................................26 Supported CDM/LDM Notations.................................................27 Conceptual Diagrams.........................................................31 Logical Diagrams............................................................43 Data Items (CDM)............................................................47 Entities (CDM/LDM)..........................................................49 Attributes (CDM/LDM)........................................................55 Identifiers (CDM/LDM)........................................................58 Relationships (CDM/LDM)..................................................... 59 Associations and Association Links (CDM)..........................................70 Inheritances (CDM/LDM)......................................................77 1.3 Physical Diagrams..............................................................82
    [Show full text]
  • Design of Instructional Modeling Language for Learning Objects and Learning Objectsâ•Ž Repositories
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Dissertations Student Research 8-2019 Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories Altaf Siddiqui Follow this and additional works at: https://digscholarship.unco.edu/dissertations Recommended Citation Siddiqui, Altaf, "Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories" (2019). Dissertations. 588. https://digscholarship.unco.edu/dissertations/588 This Text is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Dissertations by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. ©2019 ALTAF SIDDIQUI ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School DESIGN OF INSTRUCTIONAL MODELING LANGUAGE FOR LEARNING OBJECTS AND LEARNING OBJECTS’ REPOSITORIES A Capstone Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy Altaf Siddiqui College of Education and Behavioral Sciences Department of Educational Technology August 2019 This Capstone by: Altaf Siddiqui Entitled: Design of Instructional Modeling Language for Learning Objects and Learning Objects Repositories has been approved as meeting the requirement for the Degree of Doctor of Audiology in College of Education and Behavioral Sciences in Department of Educational Technology
    [Show full text]
  • Integration Definition for Function Modeling (IDEF0)
    NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance,
    [Show full text]
  • Metamodeling and Method Engineering with Conceptbase”
    This is a pre-print of the book chapter M. Jeusfeld: “Metamodeling and method engineering with ConceptBase” . In Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for Method Engineering, pp. 89-168. The MIT Press., 2009; the original book is available from MIT Press http://mitpress.mit.edu/node/192290 This pre-print may only be used for scholar, non-commercial purposes. Most of the sources for the examples in this chapter are available via http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3782591 for download. They require ConceptBase 7.0 or later available from http://conceptbase.cc. Metamodeling and Method Engineering with ConceptBase Manfred Jeusfeld Abstract. This chapter provides a practical guide on how to use the meta data repository ConceptBase to design information modeling methods by using meta- modeling. After motivating the abstraction principles behind meta-modeling, the language Telos as realized in ConceptBase is presented. First, a standard factual representation of statements at any IRDS abstraction level is defined. Then, the foundation of Telos as a logical theory is elaborated yielding simple fixpoint semantics. The principles for object naming, instantiation, attribution, and specialization are reflected by roughly 30 logical axioms. After the language axiomatization, user-defined rules, constraints and queries are introduced. The first part is concluded by a description of active rules that allows the specification of reactions of ConceptBase to external events. The second part applies the language features of the first part to a full-fledged information modeling method: The Yourdan method for Modern Structured Analysis. The notations of the Yourdan method are designed along the IRDS framework.
    [Show full text]
  • Design and Implementation of the L+C Modeling Language
    Design and implementation of the L+C modeling language Radoslaw Karwowski and Przemyslaw Prusinkiewicz Department of Computer Science University of Calgary Abstract L-systems are parallel grammars that provide a theoretical foundation for a class of programs used in procedural image synthesis and simulation of plant development. In particular, the formalism of L-systems guides the construction of declarative languages for specifying input to these programs. We outline key factors that have motivated the development of L-system- based languages in the past, and introduce a new language, L+C, that addresses the shortcom- ings of its predecessors. We also describe the implementation of L+C, in which an existing language, C++, was extended with constructs specific to L-systems. This implementation methodology made it possible to develop a powerful modeling system in a relatively short pe- riod of time. 1. Background L-systems were conceived as a rule-based formalism for reasoning on developing multicellular organisms that form linear or branching filaments [Lindenmayer, 1968]. Soon after their introduction, L-systems also began to be used as a foundation of visual modeling and simulation programs, and computer languages for specifying the models [Baker and Herman, 1972]. Subsequently they also found applications in the generation of fractals [Szilard and Quinton, 1979; Prusinkiewicz, 1986] and geometric modeling [Prusinkiewicz et al., 2003]. A common factor uniting these diverse applications is the treatment of structure and form as a result of development. A historical perspective of the L-system-based software and its practical applications is presented in [Prusinkiewicz, 1997]. According to the L-system approach, a developing structure is represented by a string of symbols over a predefined alphabet V.
    [Show full text]
  • Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes
    Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes “The Business Driven Application Lifecycle” Bob Sherman Procter & Gamble Pharmaceuticals [email protected] Michael Sutherland Galactic Solutions Group, LLC [email protected] Prepared for the Telelogic 2005 User Group Conference, Americas & Asia/Pacific http://www.telelogic.com/news/usergroup/us2005/index.cfm 24 October 2005 Abstract: The fact that most Information Technology (IT) projects fail as a result of requirements management problems is common knowledge. What is not commonly recognized is that the widely haled “use case” and Object Oriented Analysis and Design (OOAD) phenomenon have resulted in little (if any) abatement of IT project failures. In fact, ten years after the advent of these methods, every major IT industry research group remains aligned on the fact that these projects are still failing at an alarming rate (less than a 30% success rate). Ironically, the popularity of use case and OOAD (e.g. UML) methods may be doing more harm than good by diverting our attention away from addressing the real root cause of IT project failures (when you have a new hammer, everything looks like a nail). This paper asserts that, the real root cause of IT project failures centers around the failure to map requirements to an accurate, precise, comprehensive, optimized business model. This argument will be supported by a using a brief recap of the history of use case and OOAD methods to identify differences between the problems these methods were intended to address and the challenges of today’s IT projects.
    [Show full text]
  • Metamodeling the Enhanced Entity-Relationship Model
    Metamodeling the Enhanced Entity-Relationship Model Robson N. Fidalgo1, Edson Alves1, Sergio España2, Jaelson Castro1, Oscar Pastor2 1 Center for Informatics, Federal University of Pernambuco, Recife(PE), Brazil {rdnf, eas4, jbc}@cin.ufpe.br 2 Centro de Investigación ProS, Universitat Politècnica de València, València, España {sergio.espana,opastor}@pros.upv.es Abstract. A metamodel provides an abstract syntax to distinguish between valid and invalid models. That is, a metamodel is as useful for a modeling language as a grammar is for a programming language. In this context, although the Enhanced Entity-Relationship (EER) Model is the ”de facto” standard modeling language for database conceptual design, to the best of our knowledge, there are only two proposals of EER metamodels, which do not provide a full support to Chen’s notation. Furthermore, neither a discussion about the engineering used for specifying these metamodels is presented nor a comparative analysis among them is made. With the aim at overcoming these drawbacks, we show a detailed and practical view of how to formalize the EER Model by means of a metamodel that (i) covers all elements of the Chen’s notation, (ii) defines well-formedness rules needed for creating syntactically correct EER schemas, and (iii) can be used as a starting point to create Computer Aided Software Engineering (CASE) tools for EER modeling, interchange metadata among these tools, perform automatic SQL/DDL code generation, and/or extend (or reuse part of) the EER Model. In order to show the feasibility, expressiveness, and usefulness of our metamodel (named EERMM), we have developed a CASE tool (named EERCASE), which has been tested with a practical example that covers all EER constructors, confirming that our metamodel is feasible, useful, more expressive than related ones and correctly defined.
    [Show full text]
  • On the Analysis of Cmmn Expressiveness: Revisiting Workflow Patterns
    ' $ ON THE ANALYSIS OF CMMN EXPRESSIVENESS: REVISITING WORKFLOW PATTERNS Renata Carvalho 1, Anis Boubaker 1, Javier Gonzalez-Huerta 1, Hafedh Mili 1, Simon Ringuette 2, and Yasmine Charif 3 Mars 2016 D´epartement d'informatique Universit´edu Qu´ebec `aMontr´eal Rapport de recherche Latece 2016-1 & % ON THE ANALYSIS OF CMMN EXPRESSIVENESS: REVISITING WORKFLOW PATTERNS Renata Carvalho 1, Anis Boubaker 1, Javier Gonzalez- Huerta 1, Hafedh Mili 1, Simon Ringuette 2, and Yasmine Charif 3 1 D´epartement d'informatique UQAM Montr´eal,Qc, Canada 2 Trisotech Inc. Montr´eal,Qc, Canada 3 Xerox Innovation Group Xerox Research Center Webster Mailstop 128-29E Laboratoire de recherche sur les technologies du commerce ´electronique D´epartement d'informatique Universit´edu Qu´ebec `aMontr´eal C.P. 8888, Succ. Centre-Ville Montr´eal,QC, Canada H3C 3P8 http://www.latece.uqam.ca Mars 2016 Rapport de recherche Latece 2016-1 Summary Traditional business process modeling languages use an imperative style to specify all possible execution flows, leaving little flexibility to process operators. Such lan- guages are appropriate for low-complexity, high-volume, mostly automated processes. However, they are inadequate for case management, which involves low-volume, high- complexity, knowledge-intensive work processes of today's knowledge workers. OMG's Case Management Model and Notation(CMMN), which uses a declarative stytle to specify constraints placed at a process execution, aims at addressing this need. To the extent that typical case management situations do include at least some measure of imperative control, it is legitimate to ask whether an analyst working exclusively in CMMN can comfortably model the range of behaviors s/he is likely to encounter.
    [Show full text]
  • System Model-Based Definition of Modeling Language Semantics In: Proc
    System Model-Based Definition of Modeling Language Semantics Hans Gr¨onniger, Jan Oliver Ringert, and Bernhard Rumpe Lehrstuhl Informatik 3 (Softwaretechnik), RWTH Aachen, Germany Abstract. In this paper, we present an approach to define the seman- tics for object-oriented modeling languages. One important property of this semantics is to support underspecified and incomplete models. To this end, semantics is given as predicates over elements of the seman- tic domain. This domain is called the system model which is a general declarative characterization of object systems. The system model is very detailed since it captures various relevant structural, behavioral, and in- teraction aspects. This allows us to re-use the system model as a domain for various kinds of object-oriented modeling languages. As a major con- sequence, the integration of language semantics is straight-forward. The whole approach is supported by tools that do not constrain the seman- tics definition’s expressiveness and flexibility while making it machine- checkable. 1 Introduction Modeling is an integral part of complex software system development projects. The purpose of models ranges from assisting developers and customers commu- nicate to test case generation or (automatic) derivation of the developed system. A prominent example modeling language is UML [1]. Actually, it is a family of languages used to model various aspects of a software system. While UML is widely used, domain specific modeling languages emerged recently that allow developers and even customers to express solutions to well-defined problems in aconciseway. A complete definition of a modeling language consists of the description of its syntax, including well-formedness rules and its semantics (meaning) [2].
    [Show full text]
  • System Structure Modeling Language (S2ML) Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy
    System Structure Modeling Language (S2ML) Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy To cite this version: Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. System Structure Modeling Language (S2ML). 2015. hal-01234903 HAL Id: hal-01234903 https://hal.archives-ouvertes.fr/hal-01234903 Preprint submitted on 1 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. System Structure Modeling Language (S2ML) Language Specification Version 1.0 November 2015 Abstract: This document defines the S2ML language, version 1.0. S2ML is developed in the framework of the OpenAltaRica project, leaded by IRT SystemX, Palaiseau, France. S2ML is a freely available, prototype-oriented language for both representing the structure complex systems and structuring models of these systems. It aims at providing a minimal but sufficient set of constructs for these purposes. S2ML 1.0 Specification 2 Copyright © AltaRica Association, 2015 All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e. this document can be freely distributed especially electronically, provided the copyright notice and these conditions are retained. No patent liability is assumed with respect to the use of information contained herein. While every precaution has been taken in the preparation of this document, no responsibility for errors or omissions is assumed.
    [Show full text]
  • The Importance of Data Models in Enterprise Metadata Management
    THE IMPORTANCE OF DATA MODELS IN ENTERPRISE METADATA MANAGEMENT October 19, 2017 © 2016 ASG Technologies Group, Inc. All rights reserved HAPPINESS IS… SOURCE: 10/18/2017 TODAY SHOW – “THE BLUE ZONE OF HAPPINESS” – DAN BUETTNER • 3 Close Friends • Get a Dog • Good Light • Get Religion • Get Married…. Stay Married • Volunteer • “Money will buy you Happiness… well, it’s more about Financial Security” • “Our Data Models are now incorporated within our corporate metadata repository” © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable 2. Data Models can in be incorporated into your corporate metadata repository © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable 2. Data Models can in be incorporated into your corporate metadata repository 3. ASG Technologies can provide an overall solution with services to accomplish #2 above and more for your company. © 2016 ASG Technologies Group, Inc. All rights reserved AGENDA Data model imports to the metadata collection View and search capabilities Traceability of physical and logical
    [Show full text]
  • CA Erwin Data Modeler Release Notes
    CA ERwin® Data Modeler Release Notes Release 9.5.1 This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without the prior written consent of CA. If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy. The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
    [Show full text]