Update on CRMP Implementation: GCRG Training Seminar, 2007

Total Page:16

File Type:pdf, Size:1020Kb

Update on CRMP Implementation: GCRG Training Seminar, 2007 National Park Service U.S. Department of the Interior Grand Canyon Grand Canyon National Park Arizona Update on CRMP Implementation: GCRG Training Seminar, 2007 The Colorado River Management Plan (CRMP) completed in March 2006, sets management direction for recreational use and resource protection of the Colorado River in Grand Canyon National Park. The new plan describes management actions for Lees Ferry to Diamond Creek and for the Lower Gorge from Diamond Creek to Lake Mead. A summary document posted on the park’s website describes the key components of the CRMP including: Recreational Use and Seasonal Distribution • Non-motorized use only from September 16 – March 31 • Daily launch schedules even throughout the week: Summer = 5 or 6 launches; Spring = 2-4; Fall = 2-3; Winter = 1 • Whitmore exchanges April 1 – September 15 only; complete by 10am daily • Commercial group size including guides: 32 in summer, 24 in shoulders • Noncommercial group size: standard 16 person and small 8 person • Noncommercial Permits System: Lottery replaces Waiting List Resource Protection and Conservation • Tapeats Creek and Kanab Creek: Day-use only (no camping) • LCR restrictions to protect Humpback Chub habitat (no boat parking in LCR year round; no wading, etc on south bank March - November) • Resource Monitoring and Mitigation Program: To ensure that CRMP resource conservation objectives are met, the NPS will implement a long-term monitoring program to determine how recreational use affects resource conditions. In addition, the NPS will implement a resource conservation program that involves conducting cyclic maintenance and repair of trails, obliteration of social trails and camping impacts in fragile areas and other treatments to preserve the integrity of the natural and cultural resources. The NPS will also implement a Visitor Experience Monitoring Plan that looks at how the new of use levels and use patterns affect visitor’s experience and wilderness character. For more information and updates: Checkout www.nps.gov/grca/parkmgmt/crmp.htm Or contact Linda Jalbert: 928-638-7909 or [email protected] .
Recommended publications
  • Arizona TIM PALMER FLICKR
    Arizona TIM PALMER FLICKR Colorado River at Mile 50. Cover: Salt River. Letter from the President ivers are the great treasury of noted scientists and other experts reviewed the survey design, and biological diversity in the western state-specific experts reviewed the results for each state. RUnited States. As evidence mounts The result is a state-by-state list of more than 250 of the West’s that climate is changing even faster than we outstanding streams, some protected, some still vulnerable. The feared, it becomes essential that we create Great Rivers of the West is a new type of inventory to serve the sanctuaries on our best, most natural rivers modern needs of river conservation—a list that Western Rivers that will harbor viable populations of at-risk Conservancy can use to strategically inform its work. species—not only charismatic species like salmon, but a broad range of aquatic and This is one of 11 state chapters in the report. Also available are a terrestrial species. summary of the entire report, as well as the full report text. That is what we do at Western Rivers Conservancy. We buy land With the right tools in hand, Western Rivers Conservancy is to create sanctuaries along the most outstanding rivers in the West seizing once-in-a-lifetime opportunities to acquire and protect – places where fish, wildlife and people can flourish. precious streamside lands on some of America’s finest rivers. With a talented team in place, combining more than 150 years This is a time when investment in conservation can yield huge of land acquisition experience and offices in Oregon, Colorado, dividends for the future.
    [Show full text]
  • Scoping Report: Grand Staircase-Escalante National
    CONTENTS 1 Introduction .............................................................................................................................................. 1 2 Scoping Process ....................................................................................................................................... 3 2.1 Purpose of Scoping ........................................................................................................................... 3 2.2 Scoping Outreach .............................................................................................................................. 3 2.2.1 Publication of the Notice of Intent ....................................................................................... 3 2.2.2 Other Outreach Methods ....................................................................................................... 3 2.3 Opportunities for Public Comment ................................................................................................ 3 2.4 Public Scoping Meetings .................................................................................................................. 4 2.5 Cooperating Agency Involvement ................................................................................................... 4 2.6 National Historic Preservation Act and Tribal Consultation ....................................................... 5 3 Submission Processing and Comment Coding .................................................................................... 5
    [Show full text]
  • Grand Canyon National Park U.S
    National Park Service Grand Canyon National Park U.S. Department of the Interior The official newspaper North Rim 2015 Season The Guide North Rim Information and Maps Roosevelt Point, named for President Theodore Roosevelt who in 1908, declared Grand Canyon a national monument. Grand Canyon was later established as a national park in 1919 by President Woodrow Wilson. Welcome to Grand Canyon S ITTING ATOP THE K AIBAB a meadow, a mother turkey leading her thunderstorms, comes and goes all too flies from the South Rim, the North Plateau, 8,000 to 9,000 feet (2,400– young across the road, or a mountain quickly, only to give way to the colors Rim offers a very different visitor 2,750 m) above sea level with lush lion slinking off into the cover of the of fall. With the yellows and oranges of experience. Solitude, awe-inspiring green meadows surrounded by a mixed forest. Visitors in the spring may see quaking aspen and the reds of Rocky views, a slower pace, and the feeling of conifer forest sprinkled with white- remnants of winter in disappearing Mountain maple, the forest seems to going back in time are only a few of the barked aspen, the North Rim is an oasis snowdrifts or temporary mountain glow. Crispness in the air warns of winter many attributes the North Rim has in the desert. Here you may observe lakes of melted snow. The summer, snowstorms soon to come. Although to offer. Discover the uniqueness of deer feeding, a coyote chasing mice in with colorful wildflowers and intense only 10 miles (16 km) as the raven Grand Canyon’s North Rim.
    [Show full text]
  • STATE of UTAH DEPARTMENT of NATURAL RESOURCES Technical
    STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES Technical Publication No. 70 GROUND-WATER CONDITIONS IN THE UPPER VIRGIN RIVER AND KANAB CREEK BASINS AREA, UTAH, WITH EMPHASIS ON THE NAVAJO SANDSTONE by R. M. Cordova Hydrologist, U.S. Geological Survey Prepared by the United States Geological Survey in cooperation with The Utah Department of Natural Resources Division of Water Rights 1981 CONTENTS Page Conversion factors VI Abstract 1 Introduction 2 Purpose and scope of the study.................................... 2 Previous studies and acknowledgments 2 Data-site-numbering system........................................ 3 Location and general features of the study area 3 Physiography and drainage 3 Climate 6 CuI ture and economy 9 Geologic setting 9 General characteristics of the rocks 9 General geologic structure 11 Water resources 11 Precipitation 11 Surface water 13 Runoff 13 Chemical quality 13 Ground water 16 General conditions of occurrence 16 Unconsolidated-rock aquifers 17 Consolidated-rock aquifers 19 Hydrologic properties of aquifers 20 Recharge 27 Movement 28 Discharge 30 Seepage to streams 31 Evapotranspiration 31 Springs 33 Wells 35 Subsurface outflow 36 Storage 37 Chemical quality 41 General characteristics 41 Relation to use 47 Public supply 47 Irrigation supply 47 Temperature 49 Possible hydrologic effects of increased ground-water development 50 Interference with existing wells .......................•.......... 50 Shift of the ground-water divide 55 Reduction of streamflow 56 Effects on chemical quality of water 56 Summary and conclusions 57 References cited 59 Publications of the Utah Department of Natural Resources, Division of Water Rights 78 III ILLUSTRATIONS [Plates are in pocket] Plate 1. Map showing selected geohydrologic information in the upper Virgin River basin.
    [Show full text]
  • Colorado River Managment Plan Annual Report Fiscal Year 2012
    U.S. Department of Interior GRAND CANYON NATIONAL PARK National Park Service COLORADO RIVER MANAGEMENT PLAN ANNUAL REPORT FOR FISCAL YEAR 2012 Project Number 140653 Contributions by: Vanya Pryputniewicz, Outdoor Recreation Planner Jennifer Dierker, Archeologist Linda Jalbert, Wilderness Coordinator Lisa Kearsley, Biological Technician Brett G Dickson, Principal Investigator, NAU Valerie Horncastle, Senior Research Specialist, NAU Luke Zachman, Senior Research Specialist, NAU For More Information contact: Vanya Pryputniewicz 928-638-7659 [email protected] Colorado River Management Plan Annual Report for FY2012 Page 2 Table of Contents Executive Summary ...................................................................................................................................... 4 Introduction ................................................................................................................................................... 6 Purpose and Need ......................................................................................................................................... 6 Mitigation Program ....................................................................................................................................... 7 Objectives ................................................................................................................................................. 8 Results and Observations .........................................................................................................................
    [Show full text]
  • Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And
    1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail.
    [Show full text]
  • Paria Canyon Vermilion Cliffs Wilderness Management Plan
    01\16• ,.J ~ UNITED STATES DEPARTMENT OF THE INTERIOR -- BUREAU OF LAND MANAGEMENT ~Lf 1.,.J/ t'CI/C w~P 0 ARIZONA STRIP FIELD OFFICE/KANAB RESOURCE AREA PARIA CANYONNERMILION CLIFFS WILDERNESS MANAGEMENT PLAN AMENDMENT ENVIRONMENTAL ASSESSMENT EA-AZ-01 0-97-16 I. INTRODUCTION The Paria Canyon - Vermilion Cliffs Wilderness Area contains 112,500 acres (92,500 acres in Coconino County, Arizona and 20,000 acres in Kane County, Utah) of public lands managed by the Bureau of Land Management. The area is approximately 10 to 30 miles west of Page, Arizona. Included are 35 miles of the Paria river Canyon, 15 miles of the Buckskin Gulch, Coyote Buttes, and the Vermilion Cliffs from Lee's Ferry to House Rock Valley (Map 1). The Paria Canyon, Buckskin Gulch, Wire Pass, and the Coyote Buttes Special Management Area are part of the larger Paria Canyon-Vermilion Cliffs Wilderness, designated in August 1984 (Map 2). Existing management plan guidance is to protect primitive, natural conditions and the many outstanding opportunities for hiking, backpacking, photographing, or viewing in the seven different highly scenic geologic formations from which the canyons and buttes are carved. Visitor use in Paria Canyon, Buckskin Gulch, and Coyote Buttes has increased from 2,400 visits in Fiscal Year (FY) 1986 to nearly 10,000 visits in FY96-a 375% increase in use over 10 years. This increased use, combined with the narrow nature of the canyons, small camping terraces, and changing visitor use patterns, is impacting the wilderness character of these areas. Human waste, overcrowding, and public safety have become important issues.
    [Show full text]
  • Clear-Water Tributaries of the Colorado River in the Grand Canyon, Arizona: Stream Ecology and the Potential Impacts of Managed Flow by René E
    Clear-water tributaries of the Colorado River in the Grand Canyon, Arizona: stream ecology and the potential impacts of managed flow by René E. Henery ABSTRACT Heightened attention to the sediment budget for the Colorado River systerm in Grand Canyon Arizona, and the importance of the turbid tributaries for delivering sediment has resulted in the clear-water tributaries being overlooked by scientists and managers alike. Existing research suggests that clear-water tributaries are remnant ecosystems, offering unique biotic communities and natural flow patterns. These highly productive environments provide important spawning, rearing and foraging habitat for native fishes. Additionally, clear water tributaries provide both fish and birds with refuge from high flows and turbid conditions in the Colorado River. Current flow management in the Grand Canyon including beach building managed floods and daily flow oscillations targeting the trout population and invasive vegetation has created intense disturbance in the Colorado mainstem. This unprecedented level of disturbance in the mainstem has the potential to disrupt tributary ecology and increase pressures on native fishes. Among the most likely and potentially devastating of these pressures is the colonization of tributaries by predatory non-native species. Through focused conservation and management tributaries could play an important role in the protection of the Grand Canyon’s native fishes. INTRODUCTION More than 490 ephemeral and 40 perennial tributaries join the Colorado River in the 425 km stretch between Glen Canyon Dam and Lake Mead. Of the perennial tributaries in the Grand Canyon, only a small number including the Paria River, the Little Colorado River and Kanab Creek drain large watersheds and deliver large quantities of sediment to the Colorado River mainstem (Oberlin et al.
    [Show full text]
  • Appendix a Assessment Units
    APPENDIX A ASSESSMENT UNITS SURFACE WATER REACH DESCRIPTION REACH/LAKE NUM WATERSHED Agua Fria River 341853.9 / 1120358.6 - 341804.8 / 15070102-023 Middle Gila 1120319.2 Agua Fria River State Route 169 - Yarber Wash 15070102-031B Middle Gila Alamo 15030204-0040A Bill Williams Alum Gulch Headwaters - 312820/1104351 15050301-561A Santa Cruz Alum Gulch 312820 / 1104351 - 312917 / 1104425 15050301-561B Santa Cruz Alum Gulch 312917 / 1104425 - Sonoita Creek 15050301-561C Santa Cruz Alvord Park Lake 15060106B-0050 Middle Gila American Gulch Headwaters - No. Gila Co. WWTP 15060203-448A Verde River American Gulch No. Gila County WWTP - East Verde River 15060203-448B Verde River Apache Lake 15060106A-0070 Salt River Aravaipa Creek Aravaipa Cyn Wilderness - San Pedro River 15050203-004C San Pedro Aravaipa Creek Stowe Gulch - end Aravaipa C 15050203-004B San Pedro Arivaca Cienega 15050304-0001 Santa Cruz Arivaca Creek Headwaters - Puertocito/Alta Wash 15050304-008 Santa Cruz Arivaca Lake 15050304-0080 Santa Cruz Arnett Creek Headwaters - Queen Creek 15050100-1818 Middle Gila Arrastra Creek Headwaters - Turkey Creek 15070102-848 Middle Gila Ashurst Lake 15020015-0090 Little Colorado Aspen Creek Headwaters - Granite Creek 15060202-769 Verde River Babbit Spring Wash Headwaters - Upper Lake Mary 15020015-210 Little Colorado Babocomari River Banning Creek - San Pedro River 15050202-004 San Pedro Bannon Creek Headwaters - Granite Creek 15060202-774 Verde River Barbershop Canyon Creek Headwaters - East Clear Creek 15020008-537 Little Colorado Bartlett Lake 15060203-0110 Verde River Bear Canyon Lake 15020008-0130 Little Colorado Bear Creek Headwaters - Turkey Creek 15070102-046 Middle Gila Bear Wallow Creek N. and S. Forks Bear Wallow - Indian Res.
    [Show full text]
  • Bacteria in the Grand Canyon
    White-water Researchers Check Bacteria in the Grand Canyon Item Type Article Authors Tunnicliff, Brock; Brickler, Stan; Webster, Guy Publisher College of Agriculture, University of Arizona (Tucson, AZ) Journal Progressive Agriculture in Arizona Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 27/09/2021 20:42:41 Link to Item http://hdl.handle.net/10150/296209 White -water Researchers Check Bacteria in the Grand Canyon Using river rafts equipped as mobile laboratories is the best way to By Dr. Brock Tunnicliff test water quality in the Colorado River of the Grand Canyon. The and Dr. Stan Brickler, School sharply increased number of boat trips through the canyon since the of Renewable Natural 1960s is the main reason that testing the water there has become impor- Resources, and Guy Webster, tant. Agricultural Communications Based on two years of testing, UA School of Renewable Natural Resources researchers have made recommendations for safer use of river water by boaters. Boaters should treat water from the river and its trib- utaries before drinking it. Drinking straight from the river has been common in past seasons. Boaters also should avoid stirring up bottom sediments. The sediments contain much more bacterial contamination than does the surface water. Stirring up sediments, especially in side- stream pools, can raise the fecal bacteria count in water above the stan- dard maximum for body- contact water use. Photograph: Recreational rafts The UA researchers have explained these recommendations to navigate a stretch of the Colorado River in the lower half of the boatmen from 22 licensed commercial outfitters during National Park Grand Canyon.
    [Show full text]
  • Thunder River Trail and Deer Creek
    National Park Service U.S. Department of the Interior Grand Canyon Grand Canyon National Park Arizona Thunder River Trail and Deer Creek The huge outpourings of water at Thunder River, Tapeats Spring, and Deer Spring have attracted people since prehistoric times and today this little corner of Grand Canyon is exceedingly popular among seekers of the remarkable. Like a gift, booming streams of crystalline water emerge from mysterious caves to transform the harsh desert of the inner canyon into absurdly beautiful green oasis replete with the music of falling water and cool pools. Trailhead access can be difficult, sometimes impossible, and the approach march is long, hot and dry, but for those making the journey these destinations represent something close to canyon perfection. Locations/Elevations Mileages Indian Hollow (6250 ft / 1906 m) to Bill Hall Trail Junction (5400 ft / 1647 m): 5.0 mi (8.0 km) Monument Point (7200 ft / 2196 m) to Bill Hall Junction: 2.6 mi (4.2 km) Bill Hall Junction, AY9 (5400 ft / 1647 m) to Surprise Valley Junction, AM9 (3600 ft / 1098 m): 4.5 mi ( 7.2 km) Upper Tapeats Camp, AW7 (2400 ft / 732 m): 6.6 mi ( 10.6 km) Lower Tapeats, AW8 at Colorado River (1950 ft / 595 m): 8.8 mi ( 14.2 km) Deer Creek Campsite, AX7 (2200 ft / 671 m): 6.9 mi ( 11.1 km) Deer Creek Falls and Colorado River (1950 ft / 595 m): 7.6 mi ( 12.2 km) Maps 7.5 Minute Tapeats Amphitheater and Fishtail Mesa Quads (USGS) Trails Illustrated Map, Grand Canyon National Park (National Geographic) North Kaibab Map, Kaibab National Forest (good for roads) Water Sources Thunder River, Tapeats Creek, Deer Creek, and the Colorado River are permanent water sources.
    [Show full text]
  • FISH of the COLORADO RIVER Colorado River and Tributaries Between Glen Canyon Dam and Lake Mead
    FISH OF THE COLORADO RIVER Colorado River and tributaries between Glen Canyon Dam and Lake Mead ON-LINE TRAINING: DRAFT Outline: • Colorado River • Glen Canyon Dam Adaptive Management Program (GCDAMP) • Native Fishes • Common Non-Native Fishes • Rare Non-Native Fishes • Standardized Sampling Protocol Colorado River: • The Colorado River through Grand Canyon historically hosted one of the most distinct fish assemblages in North America (lowest diversity, highest endemism) • Aquatic habitat was variable ▫ Large spring floods ▫ Cold winter temperatures ▫ Warm summer temperatures ▫ Heavy silt load • Today ▫ Stable flow releases ▫ Cooler temperatures ▫ Predation Overview: • The Glen Canyon Dam Adaptive Management Program was established in 1997 to address downstream ecosystem impacts from operation of Glen Canyon Dam and to provide research and monitoring of downstream resources. Area of Interest: from Glen Canyon Dam to Lake Mead Glen Canyon Dam Adaptive Management Program (Fish) Goals: • Maintain or attain viable populations of existing native fish, eliminate risk of extinction from humpback chub and razorback sucker, and prevent adverse modification to their critical habitat. • Maintain a naturally reproducing population of rainbow trout above the Paria River, to the extent practicable and consistent with the maintenance of viable populations of native fish. Course Purpose: • The purpose of this training course “Fish of the Colorado River” is to provide a general overview of fish located within the Colorado River below Glen Canyon Dam downstream to Lake Mead and linked directly to the GCDAMP. • Also included are brief explanations of management concerns related to the native fish species, as well as species locations. Native Fishes: Colorado River and tributaries between Glen Canyon Dam and Lake Mead Bluehead Sucker • Scientific name: Catostomus discobolus • Status: Species of Special Concern (conservation status may be at risk) • Description: Streamlined with small scales.
    [Show full text]