The Human ABCB6 Protein Is the Functional Homologue of HMT-1 Proteins Mediating Cadmium… a 1

Total Page:16

File Type:pdf, Size:1020Kb

The Human ABCB6 Protein Is the Functional Homologue of HMT-1 Proteins Mediating Cadmium… a 1 Cellular and Molecular Life Sciences https://doi.org/10.1007/s00018-019-03105-5 Cellular andMolecular Life Sciences ORIGINAL ARTICLE The human ABCB6 protein is the functional homologue of HMT‑1 proteins mediating cadmium detoxifcation Zsófa Rakvács1 · Nóra Kucsma1 · Melinda Gera1 · Barbara Igriczi1 · Katalin Kiss1 · János Barna2 · Dániel Kovács2 · Tibor Vellai2 · László Bencs4 · Johannes M. Reisecker5 · Norbert Szoboszlai3 · Gergely Szakács1,5 Received: 30 November 2018 / Revised: 9 April 2019 / Accepted: 11 April 2019 © The Author(s) 2019 Abstract ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing signifcant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localiza- tion of ABCB6 has been a matter of debate, with conficting reports suggesting mitochondrial or endolysosomal expres- sion. ABCB6 shows signifcant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, efectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our fndings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxifcation. Keywords ABC transporters · Subcellular localization · ABCB6 · HMT-1 · Endolysosomal system · Detoxifcation · Cadmium Introduction Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0001 8-019-03105 -5) contains supplementary material, which is available to authorized users. ATP-binding cassette (ABC) transporters constitute one of the largest protein families in prokaryotes and eukary- * Gergely Szakács otes. ABC transporters are integral transmembrane proteins [email protected] that function as active transporters, channels or regula- 1 Institute of Enzymology, Research Centre for Natural tors. Active ABC transporters harness the energy of ATP Sciences, Hungarian Academy of Sciences, Budapest, to move a diverse array of substrates in or out of cells, or Hungary into cellular vesicles. There are 48 human ABC transporters, 2 Department of Genetics, Institute of Biology, Eötvös Loránd many of which are linked to severe inherited diseases, such University, Budapest, Hungary as cystic fbrosis, or X-linked adrenoleukodystrophy [1]. 3 Department of Analytical Chemistry, Institute of Chemistry, Whereas several human ABC transporters have dedicated Eötvös Loránd University, Budapest, Hungary physiological roles (e.g., transport of phosphatidylcholine 4 Institute for Solid State Physics and Optics, Wigner Research by ABCB4/MDR3; antigen processing by ABCB2/3), most Centre for Physics, Hungarian Academy of Sciences, recognize various xenobiotics and contribute to the “chemo- Budapest, Hungary immunity” network of cells and organisms [2]. At the cel- 5 Department of Medicine I, Comprehensive Cancer Center, lular level, multidrug resistance (MDR) transporters such as Institute of Cancer Research, Medical University of Vienna, P-glycoprotein (ABCB1) play an important role in cancer Vienna, Austria Vol.:(0123456789)1 3 Z. Rakvács et al. drug resistance by reducing the concentration of chemother- sensitivity phenotype of HMT-1-defcient S. pombe and C. apeutics below a cell-killing threshold. In addition, MDR elegans strains. Our fndings reveal ABCB6 as a functional transporters are also expressed in pharmacological barriers orthologue of the HMT-1 proteins, linking ABCB6 to the such as the blood–brain barrier, where they modulate the highly conserved mechanism of intracellular cadmium passage of drugs [3]. detoxifcation. Consistent with our previous fndings show- ABCB6 is widely expressed in many tissues, especially in ing extramitochondrial localization, these results provide the heart, liver, skeletal muscles [4], the red blood cells [5, functional evidence supporting the endolysosomal function 6], and skin [7]. ABCB6 is a half transporter of 842 amino of ABCB6. acids, containing a unique N-terminal region followed by the ABC core consisting of a transmembrane domain and a cyto- plasmic nucleotide-binding domain. ABCB6 forms homodi- Results mers [8, 9] and was shown to possess ATPase and transport activities after purifcation and functional reconstitution into Heterologous expression of human ABCB6 restores liposomes [10]. At present, the subcellular localization of cadmium tolerance of S. pombe hmt‑1Δ mutants ABCB6 remains a matter of debate. In 2006, ABCB6 was described as a mitochondrial porphyrin transporter with an To test whether ABCB6 and SpHMT-1 have overlapping essential role in heme biosynthesis [8]. Subsequent studies functions, we expressed the wild-type human ABCB6 pro- have found ABCB6 to be dispensable for erythropoiesis [5, tein, a catalytically inactive mutant variant (ABCB6-KM 9], suggesting that mitochondrial porphyrin import may not [9]) and SpHMT-1 in a hmt-1-deleted mutant S. pombe depend on ABCB6. In addition, several research groups have strain showing increased cadmium (Cd) sensitivity (Fig. 1a). identifed ABCB6 in extramitochondrial compartments, SpHMT-1-GFP was also localized to the vacuoles, matching challenging the paradigm linking the expression and func- the staining of the vacuolar membrane by FM 4–64 [22]. tion of ABCB6 to mitochondria. ABCB6 was detected in the Confocal microscopy analysis of cells expressing ABCB6- plasma membrane of cells [11], the red blood cell membrane GFP or SpHMT-1-GFP revealed a similar intracellular pat- [5, 9], melanosomes [12] and throughout the endolysosomal tern, indicating that the human ABCB6 protein is targeted continuum [13–17]. However, the physiological function of to the yeast vacuoles (Fig. 1b). As expected, expression of ABCB6 in the endolysosomal compartment has remained SpHMT-1 fully eliminated the increased cadmium sensitiv- elusive. ity of the hmt-1Δ mutant strain. Expression of wild-type ABCB6 exhibits topological and sequential similarity to ABCB6 also restored cadmium tolerance, allowing trans- HMT (Heavy Metal Tolerance) family proteins (Supplemen- formed S. pombe colonies to grow in the presence of Cd(II) tary Table 1). HMT-1 proteins in fssion yeast (Schizosac- (Fig. 1c, Supplementary Figure 1). Rescue of hmt-1-deleted charomyces pombe), nematode (Caenorhabditis elegans) strains depended on the functionality of the heterologously and the fruit fy (Drosophila melanogaster) fulfll a con- expressed transporter, since an inactivating mutation afect- served role in conferring heavy metal resistance [18–21]. ing a conserved Walker A lysine of ABCB6 prevented the In fssion yeast, SpHMT-1 mediates the vacuolar sequestra- growth of hmt-1-deleted colonies in the presence of cad- tion of metal adducts including phytochelatin, glutathione mium. Rescue was also observed in liquid medium (Fig. 1d). or metallothionein complexes of heavy metal ions [18]. Cytotoxicity assays revealed that the expression of ABCB6 An elegant study from the Vatamaniuk laboratory has shown in hmt-1Δ S. pombe cells conferred resistance to As(III), that HMT-1 proteins in C. elegans (CeHMT-1) and D. mela- but not to As(V), Sb(V), Hg(II), or Zn(II) (Supplementary nogaster (DmHMT-1) can also mediate the sequestration Figure 2). and elimination of Cd complexes. In particular, heterolo- gously expressed DmHMT-1 or CeHMT-1 were shown to Determination of vacuolar cadmium content suppress the cadmium hypersensitivity of S. pombe hmt-1 mutants, concomitant with the localization of CeHMT-1 SpHMT-1 reduces the intracellular concentrations of cad- to the vacuolar membrane. These results clearly indicated mium by catalyzing the vacuolar sequestration of Cd–PC that the HMT-1-mediated detoxifcation of heavy metals complexes [18]. To verify that the ability of ABCB6 to is preserved during evolution, extending to some inverte- suppress the Cd hypersensitivity of HMT-1-deficient S. brate species lacking the ability to synthesize phytochelatin pombe mutants relies on an orthologous function, we (PC) [20, 21]. Given the similarity of HMT-1 and ABCB6 assayed the Cd contents of intact vacuoles isolated from sequences, the major aim of this study was to test if ABCB6 CdCl2-treated yeast cells. The integrity of the purified can complement the function of HMT-1 proteins. We show vacuoles was confirmed by acridine-orange (AO) stain- that ABCB6 can be functionally expressed in the vacuolar/ ing (Supplementary Figure 3). Graphite furnace atomic endosomal membrane, resulting in a rescue of the cadmium absorption spectrometry (GFAAS) analysis showed 1 3 The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium… a 1. 2. 3. 4. 5. 130 kDa 100 kDa
Recommended publications
  • ABCG1 (ABC8), the Human Homolog of the Drosophila White Gene, Is a Regulator of Macrophage Cholesterol and Phospholipid Transport
    ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport Jochen Klucken*, Christa Bu¨ chler*, Evelyn Orso´ *, Wolfgang E. Kaminski*, Mustafa Porsch-Ozcu¨ ¨ ru¨ mez*, Gerhard Liebisch*, Michael Kapinsky*, Wendy Diederich*, Wolfgang Drobnik*, Michael Dean†, Rando Allikmets‡, and Gerd Schmitz*§ *Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany; †National Cancer Institute, Laboratory of Genomic Diversity, Frederick, MD 21702-1201; and ‡Departments of Ophthalmology and Pathology, Columbia University, Eye Research Addition, New York, NY 10032 Edited by Jan L. Breslow, The Rockefeller University, New York, NY, and approved November 3, 1999 (received for review June 14, 1999) Excessive uptake of atherogenic lipoproteins such as modified low- lesterol transport. Although several effector molecules have been density lipoprotein complexes by vascular macrophages leads to proposed to participate in macrophage cholesterol efflux (6, 9), foam cell formation, a critical step in atherogenesis. Cholesterol efflux including endogenous apolipoprotein E (10) and the cholesteryl mediated by high-density lipoproteins (HDL) constitutes a protective ester transfer protein (11), the detailed molecular mechanisms mechanism against macrophage lipid overloading. The molecular underlying cholesterol export in these cells have not yet been mechanisms underlying this reverse cholesterol transport process are characterized. currently not fully understood. To identify effector proteins that are Recently, mutations of the ATP-binding cassette (ABC) trans- involved in macrophage lipid uptake and release, we searched for porter ABCA1 gene have been causatively linked to familial HDL genes that are regulated during lipid influx and efflux in human deficiency and Tangier disease (12–14).
    [Show full text]
  • ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT
    [Show full text]
  • Molecular Insights Into the Human ABCB6 Transporter Guangyuan Song1, Sensen Zhang 1,Mengqitian1, Laixing Zhang1,Runyuguo1, Wei Zhuo 1 and Maojun Yang 1
    Song et al. Cell Discovery (2021) 7:55 Cell Discovery https://doi.org/10.1038/s41421-021-00284-z www.nature.com/celldisc ARTICLE Open Access Molecular insights into the human ABCB6 transporter Guangyuan Song1, Sensen Zhang 1,MengqiTian1, Laixing Zhang1,RunyuGuo1, Wei Zhuo 1 and Maojun Yang 1 Abstract ABCB6 plays a crucial role in energy-dependent porphyrin transport, drug resistance, toxic metal resistance, porphyrin biosynthesis, protection against stress, and encoding a blood group system Langereis antigen. However, the mechanism underlying porphyrin transport is still unclear. Here, we determined the cryo-electron microscopy (cryo- EM) structures of nanodisc-reconstituted human ABCB6 trapped in an apo-state and an ATP-bound state at resolutions of 3.6 and 3.5 Å, respectively. Our structures reveal a unique loop in the transmembrane domain (TMD) of ABCB6, which divides the TMD into two cavities. It restrains the access of substrates in the inward-facing state and is removed by ATP-driven conformational change. No ligand cavities were observed in the nucleotide-bound state, indicating a state following substrate release but prior to ATP hydrolysis. Structural analyses and functional characterizations suggest an “ATP-switch” model and further reveal the conformational changes of the substrate-binding pockets triggered by the ATP-driven regulation. Introduction usually contain 6–12 transmembrane α-helices and pro- 6 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; ATP-binding cassette (ABC) transporters, which trans- vide a distinctive substrate-binding site . port a variety of substrates such as nutrients, drugs, and ABCB6 is an 842-amino acid protein that belongs to the ions by hydrolyzing ATP, are a large class of transmem- B subfamily of the ABC transporter.
    [Show full text]
  • Functional Studies on the MRP1 Multidrug Transporter: Characterization of ABC-Signature Mutant Variants
    ANTICANCER RESEARCH 24: 449-456 (2004) Functional Studies on the MRP1 Multidrug Transporter: Characterization of ABC-signature Mutant Variants ZS. SZENTPÉTERY1,2, B. SARKADI1, É. BAKOS2 and A. VÁRADI2 1National Medical Center, Institute of Haematology and Immunology, Membrane Research Group of the Hungarian Academy of Sciences, Budapest; 2Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary Abstract. Background: MRP1 is a key multidrug resistance these agents below the cell-killing threshold, thus conferring ATP-binding Cassette (ABC) transporter in tumor cells. A resistance to many structurally dissimilar anticancer drugs. functionally important signature motif is conserved within all One of the proteins causing this phenotype is the human ABC domains. Our current studies aimed to elucidate the role Multidrug Resistance Protein (MRP1), which confers of these motifs in the cooperation of MRP1 ABC domains. resistance to a wide variety of anticancer drugs (1), but has Materials and Methods: We designed human MRP1 mutants also been shown to be a high affinity primary active based on a bacterial ABC structure. Conserved leucines (Leu) transporter for glutathione (GS)-conjugates (e.g. LTC4 – see were replaced by arginines (Arg), while glycines (Gly) were 2, 3). MRP1 transports large hydrophobic drugs, playing an substituted for aspartic acids (Asp). The activity of these important role in the chemotherapy resistance of several mutants was assayed by measuring ATPase activity and types of cancer cells, and cellular GS seem to be an vesicular transport. ATP-binding and transition-state formation important modulator in these transport functions (2, 4-9). were studied by a photoreactive ATP analog.
    [Show full text]
  • Inhibiting ABCG2 with Sorafenib
    Published OnlineFirst May 16, 2012; DOI: 10.1158/1535-7163.MCT-12-0215 Molecular Cancer Therapeutic Discovery Therapeutics New Use for an Old Drug: Inhibiting ABCG2 with Sorafenib Yinxiang Wei1,3, Yuanfang Ma3, Qing Zhao1,4, Zhiguang Ren1,3, Yan Li1, Tingjun Hou2, and Hui Peng1 Abstract Human ABCG2, a member of the ATP-binding cassette transporter superfamily, represents a promising target for sensitizing MDR in cancer chemotherapy. Although lots of ABCG2 inhibitors were identified, none of them has been tested clinically, maybe because of several problems such as toxicity or safety and pharma- cokinetic uncertainty of compounds with novel chemical structures. One efficient solution is to rediscover new uses for existing drugs with known pharmacokinetics and safety profiles. Here, we found the new use for sorafenib, which has a dual-mode action by inducing ABCG2 degradation in lysosome in addition to inhibiting its function. Previously, we reported some novel dual-acting ABCG2 inhibitors that showed closer similarity to degradation-induced mechanism of action. On the basis of these ABCG2 inhibitors with diverse chemical structures, we developed a pharmacophore model for identifying the critical pharmacophore features necessary for dual-acting ABCG2 inhibitors. Sorafenib forms impressive alignment with the pharmacophore hypothesis, supporting the argument that sorafenib is a potential ABCG2 inhibitor. This is the first article that sorafenib may be a good candidate for chemosensitizing agent targeting ABCG2-mediated MDR. This study may facilitate the rediscovery of new functions of structurally diverse old drugs and provide a more effective and safe way of sensitizing MDR in cancer chemotherapy. Mol Cancer Ther; 11(8); 1693–702.
    [Show full text]
  • The Impact of Cigarette Smoke Exposure, COPD, Or Asthma Status
    www.nature.com/scientificreports OPEN The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression Received: 20 July 2018 Accepted: 14 November 2018 in human airway epithelial cells Published: xx xx xxxx Jennifer A. Aguiar 1, Andrea Tamminga1, Briallen Lobb1, Ryan D. Huf2, Jenny P. Nguyen3, Yechan Kim3, Anna Dvorkin-Gheva4, Martin R. Stampfi3,4, Andrew C. Doxey1 & Jeremy A. Hirota 1,2,3,4,5 ABC transporters are conserved in prokaryotes and eukaryotes, with humans expressing 48 transporters divided into 7 classes (ABCA, ABCB, ABCC, ABCD, ABDE, ABCF, and ABCG). Throughout the human body, ABC transporters regulate cAMP levels, chloride secretion, lipid transport, and anti-oxidant responses. We used a bioinformatic approach complemented with in vitro experimental methods for validation of the 48 known human ABC transporters in airway epithelial cells using bronchial epithelial cell gene expression datasets available in NCBI GEO from well-characterized patient populations of healthy subjects and individuals that smoke cigarettes, or have been diagnosed with COPD or asthma, with validation performed in Calu-3 airway epithelial cells. Gene expression data demonstrate that ABC transporters are variably expressed in epithelial cells from diferent airway generations, regulated by cigarette smoke exposure (ABCA13, ABCB6, ABCC1, and ABCC3), and diferentially expressed in individuals with COPD and asthma (ABCA13, ABCC1, ABCC2, ABCC9). An in vitro cell culture model of cigarette smoke exposure was able to recapitulate select observed in situ changes. Our work highlights select ABC transporter candidates of interest and a relevant in vitro model that will enable a deeper understanding of the contribution of ABC transporters in the respiratory mucosa in lung health and disease.
    [Show full text]
  • The Role of Mitochondrial ATP-Binding Cassette Transporter
    The Role of Mitochondrial ATP-Binding Cassette Transporter ABCB6 in Metabolism and Energy Balance By © 2019 Robert T Tessman Submitted to the graduate degree program in Toxicology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Committee Chair: Partha Kasturi, PhD Bruno Hagenbuch, PhD Hao Zhu, PhD Tiangang Li, PhD Luciano DiTacchio, PhD Date Defended: April 19th, 2019Title Page ii The dissertation committee for Robert T Tessman certifies that this is the approved version of the following dissertation: The role of Mitochondrial ATP-Binding Cassette Transporter ABCB6 in Metabolism and Energy Balance Committee Chair: Partha Kasturi, PhD Acceptance Page Date Approved: April 19th, 2019 iii Abstract Obesity and the associated health risks represent a world-wide health and financial crisis. Lack of physical activity combined with excessive caloric intake are the root cause of the problem. Despite the increased advocation for healthy lifestyle choices, the trend has yet to reverse and indeed, seems to be on the rise especially among pre- teens and adolescents, a constituent that had not been previously part of the obesity epidemic. Mitochondria are the “fuel-burners” of the body and like other combustion devices, become inefficient in the context of fuel surplus. Moreover, with chronic over-feeding, the physiological mechanisms that regulate energy balance become permanently dysfunctional leading to the progression of pathologies such as Type II diabetes and cardiovascular disease. Medical and scientific evidence confirms that mitochondria are integral to the responses necessary to adapt to over-nutrition. However, success in mitochondria- based therapies has been extremely limited in the context of metabolic diseases.
    [Show full text]
  • The Putative Mitochondrial Protein ABCB6
    Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes Katalin Kiss, Anna Brozik, Nora Kucsma, Alexandra Toth, Melinda Gera, Laurence Berry, Alice Vallentin, Henri Vial, Michel Vidal, Gergely Szakacs To cite this version: Katalin Kiss, Anna Brozik, Nora Kucsma, Alexandra Toth, Melinda Gera, et al.. Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes. PLoS ONE, Public Library of Science, 2012, 7 (5), pp.e37378. 10.1371/journal.pone.0037378. hal-02309092 HAL Id: hal-02309092 https://hal.archives-ouvertes.fr/hal-02309092 Submitted on 25 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes Katalin Kiss1, Anna Brozik1, Nora Kucsma1, Alexandra Toth1, Melinda Gera1,
    [Show full text]
  • Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors
    Pharmaceutics 2011 , 3, 615-635; doi:10.3390/pharmaceutics3030615 OPEN ACCESS pharmaceutics ISSN 1999-4923 www.mdpi.com/journal/pharmaceutics Review Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA)-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors Toshihisa Ishikawa 1,*, Kenkichi Takahashi 2, Naokado Ikeda 2, Yoshinaga Kajimoto 2, Yuichiro Hagiya 3, Shun-ichiro Ogura 3, Shin-ichi Miyatake 2 and Toshihiko Kuroiwa 2 1 Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan 2 Department of Neurosurgery, Osaka Medical College, Osaka 569-8686, Japan 3 Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +81-45-503-9222; Fax: +81-45-503-9216. Received: 19 July 2011; in revised form: 16 August 2011 / Accepted: 9 September 2011 / Published: 14 September 2011 Abstract: Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX) exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA) or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP)-binding cassette (ABC) transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD.
    [Show full text]
  • Missense Mutations in the ABCB6 Transporter Cause Dominant Familial Pseudohyperkalemia Immacolata Andolfo,1,2 Seth L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Catalogo dei prodotti della ricerca Research Article Missense mutations in the ABCB6 transporter cause dominant familial pseudohyperkalemia Immacolata Andolfo,1,2 Seth L. Alper,3,4,5 Jean Delaunay,6 Carla Auriemma,1,2 Roberta Russo,1,2 Roberta Asci,1 Maria Rosaria Esposito,1 Alok K. Sharma,3,4,5 Boris E. Shmukler,3,4,5 Carlo Brugnara,7 Lucia De Franceschi,8 and Achille Iolascon1,2* Familial Pseudohyperkalemia (FP) is a dominant red cell trait characterized by increased serum [K1]in whole blood stored at or below room temperature, without additional hematological abnormalities. Func- tional gene mapping and sequencing analysis of the candidate genes within the 2q35–q36 critical interval identified—in 20 affected individuals among three multigenerational FP families—two novel heterozygous missense mutations in the ABCB6 gene that cosegregated with disease phenotype. The two genomic sub- stitutions altered two adjacent nucleotides within codon 375 of ABCB6, a porphyrin transporter that, in erythrocyte membranes, bears the Langereis blood group antigen system. The ABCB6 R375Q mutation did not alter the levels of mRNA or protein, or protein localization in mature erythrocytes or erythroid precursor cells, but it is predicted to modestly alter protein structure. ABCB6 mRNA and protein levels increase dur- ing in vitro erythroid differentiation of CD341 erythroid precursors and the erythroleukemia cell lines HEL and K562. These data suggest that the two missense mutations in residue 375 of the ABCB6 polypeptide found in affected individuals of families with chromosome 2-linked FP could contribute to the red cell K1 leak characteristic of this condition.
    [Show full text]
  • Identification of Novel Rare ABCC1 Transporter Mutations in Tumor
    cells Article Identification of Novel Rare ABCC1 Transporter Mutations in Tumor Biopsies of Cancer Patients Onat Kadioglu 1, Mohamed Saeed 1, Markus Munder 2, Andreas Spuller 3, Henry Johannes Greten 4,5 and Thomas Efferth 1,* 1 Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany; [email protected] (O.K.); [email protected] (M.S.) 2 Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; [email protected] 3 Clinic for Gynecology and Obstetrics, 76131 Karlsruhe, Germany; [email protected] 4 Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-030 Porto, Portugal; [email protected] 5 Heidelberg School of Chinese Medicine, 69126 Heidelberg, Germany * Correspondence: eff[email protected]; Tel.: +49-6131-392-5751; Fax: 49-6131-392-3752 Received: 30 December 2019; Accepted: 23 January 2020; Published: 26 January 2020 Abstract: The efficiency of chemotherapy drugs can be affected by ATP-binding cassette (ABC) transporter expression or by their mutation status. Multidrug resistance is linked with ABC transporter overexpression. In the present study, we performed rare mutation analyses for 12 ABC transporters related to drug resistance (ABCA2, -A3, -B1, -B2, -B5, -C1, -C2, -C3, -C4, -C5, -C6, -G2) in a dataset of 18 cancer patients. We focused on rare mutations resembling tumor heterogeneity of ABC transporters in small tumor subpopulations. Novel rare mutations were found in ABCC1, but not in the other ABC transporters investigated. Diverse ABCC1 mutations were found, including nonsense mutations causing premature stop codons, and compared with the wild-type protein in terms of their protein structure.
    [Show full text]
  • The ABC of Glycosylation Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy
    CORRESPONDENCE LINK TO ORIGINAL ARTICLE Paola Perego, Laura Gatti and Giovanni L. Beretta are at the Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto The ABC of glycosylation Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy. Correspondence to P.P. Paola Perego, Laura Gatti and Giovanni L. Beretta e-mail: [email protected] doi:10.1038/nrc2789-c1 We read with great interest the Opinion showing the mislocalization of multidrug Acknowledgements The authors thank the Associazione Italiana per la Ricerca Sul article by Jamie Fletcher and colleagues, transporters in cisplatin-resistant cancer Cancro, Milan, Italy, for financial support. ABC transporters in cancer: more than cell lines7. Interestingly, glycosylation Competing Interests just drug efflux pumps. Nature Rev. might regulate ABC transporter levels, The authors declare no competing financial interests. Cancer. 10, 147–156 (2010), recently as altered glycosylation of ABCG2 (also 1 1. Fletcher, J. I., Haber, M., Henderson, M. J. & Norris, published in Nature Reviews Cancer . known as BCRP) results in increased M. D. ABC transporters in cancer: more than just drug The authors underline innovative aspects degradation8. Indeed, N-linked glycans efflux pumps. Nature Rev. Cancer 10, 147–156 (2010). 2. Gillet, J.-P., Efferth, T. & Remacle, J. Chemotherapy- regarding the role of ATP binding cas- are thought to be crucial regulators of the induced resistance by ATP-binding cassette transporter sette (ABC) transporters that — besides stability of ABCG2 in the endoplasmic genes. Biochem. Biophys. Acta 1775, 237–262 (2007). 3. Gatti, L., Beretta, G. L., Cossa, G., Zunino, F. & 2 8,9 contributing to drug resistance — seem reticulum .
    [Show full text]