RTI-4793-14, a New Ligand with High Affinity and Selectivity For

Total Page:16

File Type:pdf, Size:1020Kb

RTI-4793-14, a New Ligand with High Affinity and Selectivity For SYNAPSE 16:59-65 (1994) RTI-4793-14, a New Ligand With High Affinity and Selectivity for the ( +)-MK801-Insensitive [3H]1 -[ 1 -( 2- thienyl)cyclohexyl]piperidine Binding Site (PCP Site 2) of Guinea Pig Brain CARL B. GOODMAN, D. NIGEL THOMAS, AGU PERT, BETSEY EMILIEN, JEAN L. CADET, F. IVY CARROLL, BRUCE E. BLOUGH, S. WAYNE MASCARELLA, MICHAEL A. ROGAWSKI, SWAMINATHAN SUBRAMANIAM, AM) RICHARD B. ROTHMAN Clinical Psychopharmacology Section, NIDMNIH Addiction Research Center, Baltimore, Maryland 21224 (C.B.G., B.E., J.L.C., R.B.R.); Biological Psychiatry Branch, NZMH (D.N.T., A.P.) and Neuronal Excitability Section, Epilepsy Research Branch, NINDS (M.A.R., S.S.), NIH, Bethesda, Maryland 20892; and Chemistry and Life Sciences, Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194 (F.I.C., B.E.B., S.W.M.) KEY WORDS Phencyclidine receptor, RTI-4793-14, PCP, Biogenic amine reuptake carrier, ( + )-MK801, Guinea pig brain ABSTRACT L3HlTCP, an analog of the dissociative anesthetic phencyclidine (PCP), binds with high affinity to two sites in guinea pig brain membranes, one that is MK-801 sensitive and one that is not. The MK-801-sensitive site (PCP site 1) is associated with NMDA receptors, whereas the MK-801-insensitive site (PCP site 2) may be associated with biogenic amine transporters (BAT).Although several “BAT ligands” are known that bind selectively to PCP site 2 and not to PCP site 1 (such as indatraline), these corn- pounds have low affinity for site 2 (K, values > 1 pM). Here we demonstrate that the novel pyrrole RTI-4793-14 is a selective, high affinity ligand for PCP site 2. We deter- mined the IC5, values of RTI-4793-14 and several reference compounds [PCP, (+ )-MK801 and indatraline] for PCP site 1(assayed with [3H](+)-MK801),PCP site 2 (assayed with [3H]TCP in the presence of 500 nM (+)-MK801) and a variety of BAT-related measures ([3H]CFT binding to the DA transporter, [3H]nisoxetine binding to the norepinephrine transporter, [3H]dopamine uptake, [3Hlserotonin uptake). In addition, we determined the ability of RTI-4793-14 to block NMDA responses in cultured hippocampal neurons under voltage clamp. (+)-MK801 had high affinity for PCP site 1 (4.6 nM) and potently inhibited NMDA-induced responses, but was much less potent in the BAT-related mea- sures (IC,,s > 10 pM). PCP had high affinity at PCP site l (IC50= 92 nM) and PCP site 2 (1C5, = 117 nM), and was moderately potent in all BAT-related measures except [3H]nisoxetine binding. Indatraline was potent in BAT-related measures (IC,,s, 2 to 5 nM), but weak in other measures (ICs0s > 1 pM). In contrast, RTI-4793-14 had high affinity for PCP site 2 (38 nM), low affinity for PCP site 1 (> 36 pM), moderate IC5,s for all BAT-related measures, and negligible activity at NMDA receptors. Viewed collec- tively, these data indicate that RTI-4793-14 binds with high affinity and selectivity to PCP site 2 and provide further support for an association between PCP site 2 and the BATS. D 1994 WiIey-Liss, Inc.* INTRODUCTION [3H]1-[1-(2-thienyl)cyclohexyl]piperidine (TCP) and [3H]MK-801 have been extensively used to label the Received June 21,1993; accepted in revised form August 26,1993. Address reprint requests to Carl B. Goodman, Clinical Psychopharmacology binding site associated with NMDA re- Section, NIDA, NIH, Addiction Research Center, Box 5180, Baltimore, MD ceptors (PCP site 1).However, C3HlTCP also binds to a 21224. 0 1994 WILEY-LISS, INC. *This article is a US Government work and, as such, is in the public domain in the United States of America. 60 C.B.GOODMAN ET AL. site that is insensitive to MK-801 (PCP site 2) and HCl, pH 8.0 (10 mhrain). The homogenate was centri- [3H]TCP in the presence of MK-801 can be used to label fuged at 37,000 x g for 10 min, and the pellet was this site. Several lines of evidence suggest that this site washed by resuspension in the same volume of buffer may be associated with biogenic amine transporters followed by recentrifugation. The pellets were resus- (Rothman et al., 1989; Akunne et al., 1991; Akunne et pended in an equal volume of 5 mM Tris-HC1, pH 8.0, al., 1992; Rothman et al., 1992). First, PCP, which in- and the concentration was adjusted to 50 mM by the hibits the reuptake of dopamine (DA) and serotonin addition of 1 M Tris-HC1, pH 8.0. The homogenate was (5-HT) (Smith et al., 1977), has high affinity for site 2, centrifuged for 10 min at 37,000 x g. The pellets were whereas (+ I-MK801, which is a very weak DA reuptake then washed three times by resuspension and centrifu- blocker (Snell et al., 1988)) does not bind to this site. gation using 50 mM Tris HC1, pH 8.0. The final pellets Second, as reported for the guinea pig (Rothman et al., were resuspended in the Tris-HC1 buffer (0.5 mlibrain), 1989) and human brain (Akunne et al., 19911, high af- pooled and 1ml aliquots were distributed to microfuge finity serotonergic (fluoxetine) and dopaminergic tubes, which were stored at -80°C for assay. Mem- (GBR12909 and BTCP) reuptake inhibitors bind selec- branes for the [3H]nisoxetine assay were prepared as tively to site 2. Third, fluoxetine, GBR12909, and BTCP described (Rothman et al., 1993). bind nearly irreversibly to PCP site 2 consistent with a For [3H12~-carbomethoxy-3p-(4-fluorophenyl)tro- high affinity interaction (Akunne et al., 1991). Fourth, pane (CFT, WIN35,428) binding assays (see below), MPTP-induced lesions of the dopaminergic innervation male Sprague-Dawley rats (200-300 g) (Charles River) to the caudate nucleus decrease [3H]TCP binding in were anesthetized with C02 gas and decapitated. Stri- this region (Akunne et al., 1992). The latter observation ata were dissected using glass manipulators, placed in suggests a partial presynaptic localization for at least small plastic containers, and then allowed to freeze by some of these sites. placing the container in dry ice. Striata collected in this Based upon the association of PCP site 2 with BATs, way were stored at -80" C. On the day of the assay, drugs with high affinity for PCP site 2 might be ex- each striatum was placed in ice-cold binding buffer (BB: pected to inhibit the reuptake of biogenic amines. In 55.2 mM sodium phosphate buffer, pH 7.4, 5 ml per the course of studying the interaction of a series of caudate) and homogenized while still frozen with a pyrroles with PCP binding sites, we observed that Polytron. The homogenate was centrifuged for 10 min (2RS,3aSR,8bRS)-1,2,3,3a,4,8b-hexahydro-2-benzyl-l-at 30,000 x g, and the pellet was resuspended in an methylindeno-[1,2-blpyrroleresorcylate (RTI-4793-14) equal volume of BB. The homogenate was recentri- was a potent and selective ligand for PCP site 2 (Carroll fuged, and the pellet was resuspended in an equal vol- et al., in press). The availability of this compound has ume of BB. An aliquot was saved for determination of enabled us to obtain further evidence supporting the protein (0.5 ml), and the remaining homogenate was concept that PCP site 2 is associated with BATs. brought up to a final volume of 50 mustriaturn using ice-cold BB. Typical final protein concentrations, deter- MATERIALS AND METHODS mined with the method of Lowry et al., (19511, were 100 Preparation of membranes pg/ml. Initial experiments showed that at these protein Since PCP site 1and PCP site 2 are readily measured concentrations, the specific binding was directly pro- in guinea pig brain membranes (Rothman et al., 1989, portional to protein and that < 10% of the radioligand 1992),the present study was conducted using this prep- was bound (data not shown). Aliquots of membranes aration. Large batches of frozen membranes were pre- were then used in the radioligand binding assays (see pared with minor modifications of published proce- below). dures (Rothman et al., 1989). Frozen guinea pig brains with cerebellum (20-30) were thawed for 15 min and homogenized with a Polytron in ice-cold 5 mM Tris- Binding assays The [3H]TCP binding assay for PCP site 2 was con- ducted with minor modifications of published protocols Abbreviations (Rothman et al., 1989). Briefly, 12 x 75 mm polysty- rene test tubes were prefilled with 100 pl of [3HlTCP(2 BTCP benzo[blthiophenylcyclohexylpiperidine CFT WIN35,428 2~-carbomethoxy-3~-(4-fluorophenyl)tropanenM final concentration) in a protease inhibitor/ GBR12909 l-[2-[bis(4-fluorophenyl)methoxylethyl]-4- antioxidant cocktail (PIC) containing 5,000 nM (+)- 13-phenyl-propyllpiperazine MK801, 100 pl of distilled H,O or drug (in distilled Indatraline (LU19-005)( f )-trans-3-(3,4-dichlorophenyl)-N- methyl-1-indanamine H,O), 50 pl of buffer (5 mM Tris-HC1, pH 8.01, and 750 ( + )-MK801 (+ )-5-meth~l-l0.11-dih~dro-5H-dibenzola.dl-p1 of membrane (0.5-1.0 mg/ml protein, in 5 mM Tris- cyclohepten-5,lO-iminemaleate (+)-dizocilpine HC1, pH 8.0). The (+I-MK801 (500 nM final concentra- RTI-4793-14 (2RS,3aSR,8aRS)-1,2,3,3a,8,8a-Hexahydro-2-tion) was included to block I3H1TCP binding to PCP site benzyl-l-methylindeno-[l,2-blpyrrole resorcylate 1. The protease inhibitorlanti-oxidant cocktail was TCP 1-1 1-(2-thienyl)cyclohexyllpiperidine composed of 25 Fg/ml leupeptin, 25 pg/ml chymostatin, RTI-4793-14 61 0.1 mM ethylenediaminetetraacetic acid (EDTA), test drugs made up in buffer containing 1mg/ml bovine and 0.1 mM ethyleneglycol-bis-(P-aminoethyl-ether)- serum albumin, and 50 pl of buffer.
Recommended publications
  • Ie-O-JY -CH2 S (56) References Cited Wherein N Is 0 to 6, X" and Y Are Independently H, Cl, F, CH, CH, CH, CH, OCH, OH, CF, OCF, NO, U.S
    US005574060A United States Patent (19) 11) Patent Number: 5,574,060 Rothman et al. (45) Date of Patent: Nov. 12, 1996 54 SELECTIVE INHIBITORS OF BIOGENIC "Hydrindene Derivatives as Potential Oral Hypoglycemic AMINE TRANSPORTERS Agents: N-Alkyl 1,2,3,3a,4,8b-Hexahydroindeno1,2-b) pyrroles', De et al., Journal of Pharmaceutical Sciences, vol. (75) Inventors: Richard Rothman, Silver Spring, Md.; 62, No. 8, Aug. 1973, pp. 1363-1364. Frank J. Carroll, Durham, N.C.; Bruce Blough, Raleigh, N.C.; Samuel (List continued on next page.) W. Mascarella, Hillsborough, N.C. Primary Examiner-Mark L. Berch (73) Assignees: The United States of America as Attorney, Agent, or Firm-Morgan & Finnegan LLP represented by the Department of 57) ABSTRACT Health and Human Services, Washington, D.C.; Office of Technology The present invention provides a compound having the Transfer, Bethesda, Md.; Research Structure: Triangle Institue, Research Triangle Park, N.C. (21) Appl. No.: 203,222 22 Filed: Feb. 28, 1994 Related U.S. Application Data H 63 Continuation-in-part of Ser. No. 105,747, Aug. 12, 1993, abandoned. wherein X, Y, and Z are independently H, Cl, Br, F, OCH, I, or an alkyl group having 1 to 6 carbon atoms; and R is (51) Int. Cl." .......................... A61K 31/40; A61K 31/47; C07D 403/06; C07D 471/08 X (52) U.S. Cl. ............................ 514/411; 546/94; 546/146; 54.6/150; 548/427: 548/428 58) Field of Search .............................. 548/427; 514/411 -ie-O-JY -CH2 S (56) References Cited wherein n is 0 to 6, X" and Y are independently H, Cl, F, CH, CH, CH, CH, OCH, OH, CF, OCF, NO, U.S.
    [Show full text]
  • Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type?
    REVIEW published: 21 November 2019 doi: 10.3389/fpsyt.2019.00835 Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Alexei M. Bygrave 1, Kasyoka Kilonzo 2, Dimitri M. Kullmann 3, David M. Bannerman 4 and Dennis Kätzel 2* 1 Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States, 2 Institute of Applied Physiology, Ulm University, Ulm, Germany, 3 UCL Queen Square Institute of Neurology, University College London, London, United Kingdom, 4 Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom Hypofunction of N-methyl-D-aspartate glutamate receptors (NMDARs), whether caused by endogenous factors like auto-antibodies or mutations, or by pharmacological or genetic manipulations, produces a wide variety of deficits which overlap with—but do not precisely match—the symptom spectrum of schizophrenia. In order to understand how NMDAR hypofunction leads to different components of the syndrome, it is necessary to take into account which neuronal subtypes are particularly affected by it in terms of detrimental Edited by: functional alterations. We provide a comprehensive overview detailing findings in rodent Bernat Kocsis, Harvard Medical School, models with cell type–specific knockout of NMDARs. Regarding inhibitory cortical cells, United States an emerging model suggests that NMDAR hypofunction in parvalbumin (PV) positive Reviewed by: interneurons is a potential risk factor for this disease. PV interneurons display a selective Margarita Behrens, Salk Institute for Biological Studies, vulnerability resulting from a combination of genetic, cellular, and environmental factors United States that produce pathological multi-level positive feedback loops. Central to this are two Vasileios Kafetzopoulos, antioxidant mechanisms—NMDAR activity and perineuronal nets—which are themselves Harvard Medical School, United States impaired by oxidative stress, amplifying disinhibition.
    [Show full text]
  • Cerebellar Toxicity of Phencyclidine
    The Journal of Neuroscience, March 1995, 75(3): 2097-2108 Cerebellar Toxicity of Phencyclidine Riitta N&kki, Jari Koistinaho, Frank Ft. Sharp, and Stephen M. Sagar Department of Neurology, University of California, and Veterans Affairs Medical Center, San Francisco, California 94121 Phencyclidine (PCP), clizocilpine maleate (MK801), and oth- Phencyclidine (PCP), dizocilpine maleate (MK801), and other er NMDA antagonists are toxic to neurons in the posterior NMDA receptor antagonistshave attracted increasing attention cingulate and retrosplenial cortex. To determine if addition- becauseof their therapeutic potential. These drugs have neuro- al neurons are damaged, the distribution of microglial ac- protective properties in animal studies of focal brain ischemia, tivation and 70 kDa heat shock protein (HSP70) induction where excitotoxicity is proposedto be an important mechanism was studied following the administration of PCP and of neuronal cell death (Dalkara et al., 1990; Martinez-Arizala et MK801 to rats. PCP (10-50 mg/kg) induced microglial ac- al., 1990). Moreover, NMDA antagonists decrease neuronal tivation and neuronal HSP70 mRNA and protein expression damage and dysfunction in other pathological conditions, in- in the posterior cingulate and retrosplenial cortex. In ad- cluding hypoglycemia (Nellgard and Wieloch, 1992) and pro- dition, coronal sections of the cerebellar vermis of PCP (50 longed seizures(Church and Lodge, 1990; Faingold et al., 1993). mg/kg) treated rats contained vertical stripes of activated However, NMDA antagonists are toxic to certain neuronal microglial in the molecular layer. In the sagittal plane, the populations in the brain. Olney et al. (1989) demonstratedthat microglial activation occurred in irregularly shaped patch- the noncompetitive NMDA antagonists,PCP, MK801, and ke- es, suggesting damage to Purkinje cells.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
    (19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes.
    [Show full text]
  • Selective Knockdown of TASK3 Potassium Channel in Monoamine
    Manuscript Click here to download Manuscript Fullana et al - TASK3.docx 1 Research Article – Molecular Neurobiology 2 3 Selective Knockdown of TASK3 Potassium Channel in Monoamine 4 Neurons: A New Therapeutic Approach for Depression 5 M Neus Fullana1,2,3*, Albert Ferrés-Coy1,2,3*, Jorge E Ortega3,4, Esther Ruiz-Bronchal1,2,3, Verónica 6 Paz1,2,3, J Javier Meana3,4, Francesc Artigas1,2,3 and Analia Bortolozzi1,2,3 7 8 1Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 9 2Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de 10 Investigaciones Científicas), Barcelona, Spain. 11 3Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain. 12 4Department of Pharmacology, University of Basque Country UPV/EHU and BioCruces Health 13 Research Institute, Bizkaia, Spain 14 15 NF* and AF-C* contributed equally to this work. 16 For correspondence: Analia Bortolozzi, Department of Neurochemistry and Neuropharmacology 17 (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Rosello 161, 18 Barcelona 08036, Spain. Tel: +34 93638313 Fax: +34 933638301 E-mail: 19 [email protected] 20 21 22 23 Running title: Intranasal delivery of conjugated TASK3-siRNA 24 25 26 1 Abstract 2 Current pharmacological treatments for major depressive disorder (MDD) are severely compromised 3 by both slow action and limited efficacy. RNAi strategies have been used to evoke antidepressant-like 4 effects faster than classical drugs. Using small interfering RNA (siRNA), we herein show that TASK3 5 potassium channel knockdown in monoamine neurons induces antidepressant-like responses in mice.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,893,053 B2 Seed Et Al
    US0078.93053B2 (12) United States Patent (10) Patent No.: US 7,893,053 B2 Seed et al. (45) Date of Patent: Feb. 22, 2011 (54) TREATING PSYCHOLOGICAL CONDITIONS WO WO 2006/127418 11, 2006 USING MUSCARINIC RECEPTORM ANTAGONSTS (75) Inventors: Brian Seed, Boston, MA (US); Jordan OTHER PUBLICATIONS Mechanic, Sunnyvale, CA (US) Chau et al. (Nucleus accumbens muscarinic receptors in the control of behavioral depression : Antidepressant-like effects of local M1 (73) Assignee: Theracos, Inc., Sunnyvale, CA (US) antagonist in the porSolt Swim test Neuroscience vol. 104, No. 3, pp. 791-798, 2001).* (*) Notice: Subject to any disclaimer, the term of this Lind et al. (Muscarinic acetylcholine receptor antagonists inhibit patent is extended or adjusted under 35 chick Scleral chondrocytes Investigative Ophthalmology & Visual U.S.C. 154(b) by 726 days. Science, vol.39, 2217-2231.* Chau D., et al., “Nucleus Accumbens Muscarinic Receptors in the (21) Appl. No.: 11/763,145 Control of Behavioral Depression: Antidepressant-like Effects of Local M1 Antagonists in the Porsolt Swin Test.” Neuroscience, vol. (22) Filed: Jun. 14, 2007 104, No. 3, Jun. 14, 2001, pp. 791-798. Bechtel, W.D., et al., “Biochemical pharmacology of pirenzepine. (65) Prior Publication Data Similarities with tricyclic antidepressants in antimuscarinic effects only.” Arzneimittelforschung, vol. 36(5), pp. 793-796 (May 1986). US 2007/O293480 A1 Dec. 20, 2007 Chau, D.T. et al., “Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local Related U.S. Application Data Mantagonist in the Porsolt Swim test.” Neuroscience, vol. 104(3), (60) Provisional application No.
    [Show full text]
  • Ep 0790250 A2
    Patentamt Europaisches || || 1 1| || || || 1 1| || 1 1|| 1 1 1| (19) J European Patent Office Office europeen des brevets (11) EP 0 790 250 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:ation: (51) |nt. ci.6: C07D 471/08, A61 K 31/435 20.08.1997 Bulletin 1997/34 (21) Application number: 97107218.6 (22) Date of filing: 11.08.1994 (84) Designated Contracting States: • RESEARCH TRIANGLE INSTITUTE AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL Research Triangle Park, NC 27709-21 94 (US) PTSE (72) Inventor: (30) Priority: 12.08.1993 US 105747 The designation of the inventor has not yet bee 28.02.1 994 US 203222 n filed (62) Document number(s) of the earlier application(s) in (74) Representative: VOSSI US & PARTNER accordance with Art. 76 EPC: Siebertstrasse 4 94925860.2 / 0 71 3 484 81 675 Munchen (DE) (71) Applicants: Remarks: This application was filed on 30 - 04 - 1 997 as a THE GOVERNMENT OF THE UNITED STATES O divisional application to the application mentioned F AMERICA, as represented by THE SECRETAR under INID code 62. Y, DEPARTMENT OF HEALTH AND HUMAN SER VICES Rockville, MD 20852 (US) (54) Inhibitors of biogenic amine transporters (57) The present invention provides a compound having the following structure CM The present invention also provides a pharmaceutical composition comprising the compound above and a pharma- ^ ceutically acceptable carrier. The present invention further provides a method for treating a disease characterized by a q dopamine deficiency which comprises administering to a subject in need of such treatment an amount of the pharma- lO ceutical composition above effective to treat the disease.
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • United States Patent (10 ) Patent No.: US 10,660,887 B2 Javitt (45 ) Date of Patent: *May 26 , 2020
    US010660887B2 United States Patent (10 ) Patent No.: US 10,660,887 B2 Javitt (45 ) Date of Patent : *May 26 , 2020 (54 ) COMPOSITION AND METHOD FOR (56 ) References Cited TREATMENT OF DEPRESSION AND PSYCHOSIS IN HUMANS U.S. PATENT DOCUMENTS 6,228,875 B1 5/2001 Tsai et al. ( 71 ) Applicant : Glytech , LLC , Ft. Lee , NJ (US ) 2004/0157926 A1 * 8/2004 Heresco - Levy A61K 31/198 514/561 (72 ) Inventor: Daniel C. Javitt , Ft. Lee , NJ (US ) 2005/0261340 Al 11/2005 Weiner 2006/0204486 Al 9/2006 Pyke et al . 2008/0194631 Al 8/2008 Trovero et al. ( 73 ) Assignee : GLYTECH , LLC , Ft. Lee , NJ (US ) 2008/0194698 A1 8/2008 Hermanussen et al . 2010/0069399 A1 * 3/2010 Gant CO7D 401/12 ( * ) Notice : Subject to any disclaimer, the term of this 514 / 253.07 patent is extended or adjusted under 35 2010/0216805 Al 8/2010 Barlow 2011/0207776 Al 8/2011 Buntinx U.S.C. 154 ( b ) by 95 days . 2011/0237602 A1 9/2011 Meltzer This patent is subject to a terminal dis 2011/0306586 Al 12/2011 Khan claimer . 2012/0041026 A1 2/2012 Waizumi ( 21 ) Appl. No.: 15 /650,912 FOREIGN PATENT DOCUMENTS CN 101090721 12/2007 ( 22 ) Filed : Jul. 16 , 17 KR 2007 0017136 2/2007 WO 2005/065308 7/2005 (65 ) Prior Publication Data WO 2005/079756 9/2005 WO 2011044089 4/2011 US 2017/0312275 A1 Nov. 2 , 2017 WO 2012/104852 8/2012 WO 2005/000216 9/2013 WO 2013138322 9/2013 Related U.S. Application Data (63 ) Continuation of application No.
    [Show full text]
  • The Neuroprotective Effects of Mood Stabilizers
    Looking to the Horizon: Novel Agents in Development for the Treatment of Depression page 169 in syllabus Stephen M. Stahl, MD, PhD Adjunct Professor, Department of Psychiatry University of California, San Diego School of Medicine Honorary Visiting Senior Fellow, Cambridge University, UK Director of Psychopharmacology, California Department of State Hospitals Sponsored by the Neuroscience Education Institute Additionally sponsored by Fairleigh Dickinson University School of Psychology This activity is supported by educational grants from: Lilly USA, LLC; Otsuka America Pharmaceutical, Inc.; Pamlab, L.L.C.; Sunovion Pharmaceuticals Inc.; Takeda Pharmaceuticals International, Inc., U.S. Region and Lundbeck Pharmaceutical Services, LLC; Teva Pharmaceutical Industries Ltd. with additional support from: Assurex Health, Inc.; JayMac Pharmaceuticals, LLC; Neuronetics, Inc.. For further information concerning Lilly grant funding, visit www.lillygrantoffice.com. Copyright © 2013 Neuroscience Education Institute. All rights reserved. Learning Objectives • Explain the neurobiological rationale for potential antidepressants with novel mechanisms of action • Describe the mechanisms of action of novel antidepressants that are currently in development Copyright © 2013 Neuroscience Education Institute. All rights reserved. Pretest Question One antidepressant treatment strategy currently being explored is the development of "triple reuptake inhibitors," agents that block reuptake of serotonin, norepinephrine, and dopamine. Which of the following agents currently in development is a "triple reuptake inhibitor"? 1. Amitifadine 2. Vortioxetine 3. Edivoxetine Copyright © 2013 Neuroscience Education Institute. All rights reserved. Triple Reuptake Inhibitors • 1 mechanism (SSRI) = good • 2 mechanisms (SNRI) = better? • 3 mechanisms (SERT+NET+DAT) = best? • Attempt to capture the efficacy of MAOIs without the side effects SERT: Serotonin reuptake transporter; NET: norepinephrine reuptake transporter; DAT: dopamine reuptake transporter Stahl SM.
    [Show full text]