Journal of Modern Mycology Smut Fungi: a Compendium of Their Diversity and Distribution in India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes For B.Sc. Botany 1st By Dr. Meenu Gupta Assistant Professor Botany J.D.W.C. Patna 1. Habit and Habitat of Ustilago: Ustilago, the largest genus of the family Ustilaginaceae is represented by more than 400 cosmopolitan species. Butler and Bisby (1958) reported 108 species from India. All species are parasitic and infect the floral parts of wheat, barley, oat, maize, sugarcane, Bajra, rye and wild grasses. The name Ustilago has been derived from a Latin word ustus meaning ‘burnt’ because the members of the genus produce black, sooty powdery mass of spores on the host plant parts imparting them a ‘burnt’ appearance. This black dusty mass of spores resembles soot or smut, therefore, commonly it is also known as smut fungus. The fungus is of much economic importance, because it causes heavy loss to various economically important plants. This genus is very common in U.P., Bihar, Punjab and Madhya Pradesh. 2. Symptoms of Ustilago: The symptoms appear only on the floral parts. The floral spikes turn black and remain filled with the smut spores. Ustilago produces two main types of symptoms: 1. The blackish powder of spores is easily blown away by the wind, leaving a bare stalk of inflorescence (Fig. 1 B). Species showing such symptoms are called loose smuts e.g., (a) Loose smut of oat caused by U. avenae (b) Loose smut of barley caused by U. nuda (c) Loose smut of wheat caused by U. nuda var. tritici. (Fig. 13A, B). (d) Loose smut of doob grass caused by U. -
Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315
African Journal of Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N. -
CONTROL of SMUT in WHEAT and OTHER SMALL GRAINS by H
Bulletin No. 116 June, 1931 Montana State College, Extension Service, J. C. Taylor, Director, Cooperative Extension Work in Agriculture and Home Economics. Montana State College and Uni~ed States Department of Agriculture, co-operating. Distributed in furtherance of the Acts of Congress ~ay 8 and June 30, 1.914. ~ CONTROL OF SMUT IN WHEAT AND OTHER SMALL GRAINS By H. E. Morris, Extension Plant Pathologist Waldo Kidder, Extension Agronomist Smuts cost the farmers of Montana many thousands of dollars each year. In 1930, stinking smut of wheat alone caused a loss of approximately $750;000, due to decreased yields and to a lower price per bushel. This loss and also that due to the smuts {..:Fig. 1. Smutted and normal heads of wheat. The head at the left ,is a typi:cal head affected with covered or stinking smut, The next, head IS a he'althy head. The two heads on the right show two stages of the loose smut in wheat. (-Courtesy,D. S. Dept. of Agr.) . ,( 2 MONTANA EXTENSION SERVICE of oats, barley and rye may be largely prevented by adopting the methods of seed treatment described in this bulletin. What Is Smut Smut is produced by a small parasitic plant, mould-like in appearance, belonging to a group called fungi (Fig. 2). Smut lives most of its life within and at the expense of the wheat plant. The smut powder, so familiar to all, is composed of myriads of spores which correspond to seeds in the higher plants. In the process of harvesting and threshing, these spores are dis· I Fig'. -
AR TICLE Asexual and Sexual Morphs of Moesziomyces Revisited
IMA FUNGUS · 8(1): 117–129 (2017) doi:10.5598/imafungus.2017.08.01.09 ARTICLE Asexual and sexual morphs of Moesziomyces revisited Julia Kruse1, 2, Gunther Doehlemann3, Eric Kemen4, and Marco Thines1, 2, 5 1Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60486 Frankfurt am Main, Germany; corresponding author e-mail: [email protected] 2Biodiversität und Klima Forschungszentrum, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 3Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Str. 47a, D-50674, Köln, Germany 4Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany 5Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany Abstract: Yeasts of the now unused asexually typified genus Pseudozyma belong to the smut fungi (Ustilaginales) Key words: and are mostly believed to be apathogenic asexual yeasts derived from smut fungi that have lost pathogenicity on ecology plants. However, phylogenetic studies have shown that most Pseudozyma species are phylogenetically close to evolution smut fungi parasitic to plants, suggesting that some of the species might represent adventitious isolations of the phylogeny yeast morph of otherwise plant pathogenic smut fungi. However, there are some species, such as Moesziomyces plant pathogens aphidis (syn. Pseudozyma aphidis) that are isolated throughout the world and sometimes are also found in clinical pleomorphic fungi samples and do not have a known plant pathogenic sexual morph. In this study, it is revealed by phylogenetic Ustilaginomycotina investigations that isolates of the biocontrol agent Moesziomyces aphidis are interspersed with M. -
The History, Fungal Biodiversity, Conservation, and Future Volume 1 · No
IMA FungUs · vOlume 1 · no 2: 123–142 The history, fungal biodiversity, conservation, and future ARTICLE perspectives for mycology in Egypt Ahmed M. Abdel-Azeem Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt; e-mail: [email protected] Abstract: Records of Egyptian fungi, including lichenized fungi, are scattered through a wide array Key words: of journals, books, and dissertations, but preliminary annotated checklists and compilations are not checklist all readily available. This review documents the known available sources and compiles data for more distribution than 197 years of Egyptian mycology. Species richness is analysed numerically with respect to the fungal diversity systematic position and ecology. Values of relative species richness of different systematic and lichens ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge mycobiota of Egyptian fungi is fragmentary, especially for certain systematic and ecological groups such as species numbers Agaricales, Glomeromycota, and lichenized, nematode-trapping, entomopathogenic, marine, aquatic and coprophilous fungi, and also yeasts. Certain groups have never been studied in Egypt, such as Trichomycetes and black yeasts. By screening available sources of information, it was possible to delineate 2281 taxa belonging to 755 genera of fungi, including 57 myxomycete species as known from Egypt. Only 105 taxa new to science have been described from Egypt, one belonging to Chytridiomycota, 47 to Ascomycota, 55 to anamorphic fungi and one to Basidiomycota. Article info: Submitted: 10 August 2010; Accepted: 30 October 2010; Published: 10 November 2010. INTRODUCTION which is currently accepted as a working figure although recognized as conservative (Hawksworth 2001). -
Estimation of Yield Loss in Sugarcane (Saccharum Spp.) Due to Effects of Smut Disease in Some Selected Sugarcane Genotypes Under Sudan Conditions
Journal Of Agricultural Research ISSN: 2455-7668 ESTIMATION OF YIELD LOSS IN SUGARCANE (SACCHARUM SPP.) DUE TO EFFECTS OF SMUT DISEASE IN SOME SELECTED SUGARCANE GENOTYPES UNDER SUDAN CONDITIONS Marchelo-d’Ragga, P.W. 1* 1 * Author, Philip Wani Marchelo- d’Ragga, Associate Professor, Dept. of Agricultural Sciences, College of Natural Recourses and Environmental Studies, University of Juba, P.O. Box 82 Juba, Republic of South Sudan. [email protected]; Cell phone: +211 (0) 92 823 1001; (0) 95 680 2458; (0) 92 000 8616 ABSTRACT This study was conducted at Sugarcane Research Centre, Guneid, (Latitude 150 N, longitude 330 E) in 2008/2009 cropping season. The objective was to estimate the amounts of losses (field and factory) incurred on sugarcane by the effects of smut disease of sugarcane caused by Ustilago scitaminea (Syd.). Replicated cane stalk samples were taken from each of three cane categories namely, whip-bearing canes from diseased stools (WBC-DS), apparently healthy looking canes from diseased stools (AHC-DS) and healthy canes from healthy stools (HC-HS) from some selected sugarcane genotypes. Results showed significant reductions of 5%, 4%, 5% and 40% for brix, sucrose content (pol %), estimated recoverable sugar (ERS) and stalk weight at (P=0.05), respectively in comparison to healthy canes. Fibre content of whip bearing cane stalks was significantly higher by 7% to that of HC-HS and AHC-DS; this is detrimental and responsible for losses in ERS. Moisture content and purity were however, found to be unaffected by the disease. This study has showed that, smut disease incurs losses to most cane yield parameters both in the field and factory. -
PERSOONIAL R Eflections
Persoonia 23, 2009: 177–208 www.persoonia.org doi:10.3767/003158509X482951 PERSOONIAL R eflections Editorial: Celebrating 50 years of Fungal Biodiversity Research The year 2009 represents the 50th anniversary of Persoonia as the message that without fungi as basal link in the food chain, an international journal of mycology. Since 2008, Persoonia is there will be no biodiversity at all. a full-colour, Open Access journal, and from 2009 onwards, will May the Fungi be with you! also appear in PubMed, which we believe will give our authors even more exposure than that presently achieved via the two Editors-in-Chief: independent online websites, www.IngentaConnect.com, and Prof. dr PW Crous www.persoonia.org. The enclosed free poster depicts the 50 CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT most beautiful fungi published throughout the year. We hope Utrecht, The Netherlands. that the poster acts as further encouragement for students and mycologists to describe and help protect our planet’s fungal Dr ME Noordeloos biodiversity. As 2010 is the international year of biodiversity, we National Herbarium of the Netherlands, Leiden University urge you to prominently display this poster, and help distribute branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. Book Reviews Mu«enko W, Majewski T, Ruszkiewicz- The Cryphonectriaceae include some Michalska M (eds). 2008. A preliminary of the most important tree pathogens checklist of micromycetes in Poland. in the world. Over the years I have Biodiversity of Poland, Vol. 9. Pp. personally helped collect populations 752; soft cover. Price 74 €. W. Szafer of some species in Africa and South Institute of Botany, Polish Academy America, and have witnessed the of Sciences, Lubicz, Kraków, Poland. -
Common Diseases of Small Grains and Their Management
Common Diseases of Small Grains and Their Management Gary C. Bergstrom Cornell University Section of Plant Pathology and Plant-Microbe Biology Central New York Small Grains Workshop February 3, 2015 West Winfield, NY Plant Disease: A condition of a plant of abnormal growth or function Plant Pathogen: A living organism that can incite plant disease Gary C. Bergstrom, Cornell University When a microbe feeds on a: It is called a: Living host parasite Non-living host saprophyte When a pathogen: It is called a: Gets its nutrients from biotroph living cells Kills host cells before necrotroph acquiring nutrients Gary C. Bergstrom, Cornell University Causal agents (pathogens) of infectious plant diseases • FUNGUS • OOMYCETE • BACTERIUM • VIRUS • NEMATODE Gary C. Bergstrom, Cornell University Factors affecting disease epidemiology and management • Pathogen dissemination potential – (long-distance, regional, local) • Survival in debris • Vector relationship • Favorable environment Gary C. Bergstrom, Cornell University Methods of disease management • Cultural (e.g., crop rotation) • Resistance (e.g., resistant or tolerant varieties) • Biological (e.g., biopesticides) • Chemical (e.g., fungicide seed treatment) • Regulatory (e.g., seed certification) Gary C. Bergstrom, Cornell University Yellow dwarf of cereals and grasses Gary C. Bergstrom, Cornell University Yellow dwarf of cereals and grasses • Pathogen: Barley yellow dwarf luteovirus and Cereal yellow dwarf polerovirus strains • Host range: all grasses • Symptoms: leaves yellow to red or purple; stunting • Conditions: early planting; large aphid populations • Survival: in infected aphids and grasses • Spread: by aphids (short & long distance) • Management:plant after Hessian fly free date, systemic seed insecticides Gary C. Bergstrom, Cornell University Soilborne viruses © G.C. Bergstrom Gary C. -
Control of Loose Smut of Barley Richard Mullington Lewis Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Control of loose smut of barley Richard Mullington Lewis Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Plant Pathology Commons Recommended Citation Lewis, Richard Mullington, "Control of loose smut of barley " (1962). Retrospective Theses and Dissertations. 2102. https://lib.dr.iastate.edu/rtd/2102 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 63-1587 microfilmed exactly as received LEWIS, Richard Mullington, 1920- CONTROL OF LOOSE SMUT OF BARLEY. Iowa State University of Science and Technology Ph.D., 1962 Agriculture, plant pathology University Microfilms, Inc., Ann Arbor, Michigan CONTROL OF LOOSE SMUT OF BARLEY by Richard Mullington Lewis A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Plant Pathology Approved: Signature was redacted for privacy. In Charge of Major Signature was redacted for privacy. Head of Major D rtment Signature was redacted for privacy. D^ân of Grad lollege Iowa State University Of Science and Technology Ames, Iowa 1962 ii TABLE OF CONTENTS Page INTRODUCTION 1 PERTINENT LITERATURE 3 MATERIALS AND METHODS 6 Materials 6 Methods of Application 7 Seed Treatment Evaluations 12 EXPERIMENTAL RESULTS 15 1952 Results 15 1953 Results 18 195m- Results 24 1955 Results 39 DISCUSSION 41 SUMMARY AND CONCLUSIONS 48 LITERATURE CITED 51 ACKNOWLEDGEMENTS 53 APPENDIX 54 iii LIST OF TABLES Page Table 1. -
Molecular Variation of Sporisorium Scitamineum in Mainland China Revealed by RAPD and SRAP Markers
Molecular Variation of Sporisorium scitamineum in Mainland China Revealed by RAPD and SRAP Markers Y. Que, L. Xu, J. Lin, and R. Chen, Key Lab of Sugarcane Genetic Improvement, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; and M. P. Grisham, United States Department of Agriculture–Agricul- tural Research Service, Sugarcane Research Unit, Houma, LA 70360 Abstract Que, Y., Xu, L., Lin, J., Chen, R., and Grisham, M. P. 2012. Molecular variation of Sporisorium scitamineum in mainland China revealed by RAPD and SRAP markers. Plant Dis. 96:1519-1525. Sugarcane smut caused by Sporisorium scitamineum occurs world- showed that, whereas the molecular variation of S. scitamineum was wide, causing serious losses in sugar yield and quality. To study the associated with geographic origin, there was no evidence of co-evolu- molecular variation of S. scitamineum, 23 S. scitamineum isolates col- tion between sugarcane and the pathogen. The results of RAPD, SRAP, lected from the six primary sugarcane production areas in mainland or RAPD-SRAP combined analysis also did not provide any infor- China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi mation about race differentiation of S. scitamineum. This suggests that provinces) were assessed by random amplified polymorphic DNA the mixture of spores from sori collected from different areas should be (RAPD) and sequence-related amplified polymorphism (SRAP) mark- used in artificial inoculations for resistance breeding and selection. ers. The results of RAPD, SRAP, and RAPD-SRAP combined analysis Sugarcane smut, caused by Sporisorium scitamineum (Basi- The researchers concluded from the results that the fungus mi- onym: Ustilago scitaminea) (25,33), occurs worldwide and is one grated from Asia to other continents, probably through movement of the most prevalent fungal diseases of sugarcane in China. -
Topic – Loose Smut of Wheat
Course – M. Sc. Botany Part 1 Paper III Topic – Loose Smut of Wheat Prepared by – Dr. Santwana Rani Coordinated by – Prof. (Dr.) Shyam Nandan Prasad Loose Smut of Wheat ➢ The disease loose smut of wheat is caused by ustilago nuda tritici. ➢ Incidence is more in north than in south India. ➢ Country wide loss is about 2-3%of total yield. ➢ There was a loose smut epidemic in Punjab, Haryana and western U.P. in 1970-75. Distribution: ➢ All wheat growing regions of India. ➢ Particularly in Punjab, Haryana, U.P. and certain regions of M.P. Symptoms: ➢ Symptoms appear after ear emergence. ➢ Diseased ear emerged first than normal in some varieties ➢ Mostly all ears is converted into a black mass of spores ➢ All the floral parts of the head, except the rachis and pericarp membrane, are invaded by mycelium of the fungus and converted into loose aggregation of smut spores(teliospores). ➢ Significant reduction in tillering. ➢ Except awns all parts of ear converted into smut spore. ➢ Black powder in ear-covered by slivery membrane. ➢ Membrane burst later & smut spore release. ➢ Group of smut spore called sorus. ➢ High respiration and low dry weight. Causal agent: Etiology Pathogen - Ustilago nuda tritici. (Syn. U. segetum var. tritici) Systematic position: Kingdom: Fungi Phylum: Basidiomycota Sub phylum: Ustilaginomycotina Class: Ustilaginomycetes Order: Ustilaginales Family: Ustilaginaceae Genus: Ustilago Species: U tritici (Pers.) Pathogen characters: ➢ It is an internally seed borne fungal disease. ➢ It causes systemic infection. ➢ The teliospores of the fungus are pale, olive brown, spherical to oval in shape, about 5-9 micro diameter and are adorned with minute echinulations on the wall. -
Iodiversity of Australian Smut Fungi
Fungal Diversity iodiversity of Australian smut fungi R.G. Shivas'* and K. Vanky2 'Queensland Department of Primary Industries, Plant Pathology Herbarium, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia 2 Herbarium Ustilaginales Vanky, Gabriel-Biel-Str. 5, D-72076 Tiibingen, Germany Shivas, R.G. and Vanky, K. (2003). Biodiversity of Australian smut fungi. Fungal Diversity 13 :137-152. There are about 250 species of smut fungi known from Australia of which 95 are endemic. Fourteen of these endemic species were first collected in the period culminating with the publication of Daniel McAlpine's revision of Australian smut fungi in 1910. Of the 68 species treated by McAlpine, 10 were considered to be endemic to Australia at that time. Only 23 of the species treated by McAlpine have names that are currently accepted. During the following eighty years until 1990, a further 31 endemic species were collected and just 11 of these were named and described in that period. Since 1990, 50 further species of endemic smut fungi have been collected and named in Australia. There are 115 species that are restricted to either Australia or to Australia and the neighbouring countries of Indonesia, New Zealand, Papua New Guinea and the Philippines . These 115 endemic species occur in 24 genera, namely Anthracoidea (1 species), Bauerago (1), Cintractia (3), Dermatosorus (1), Entyloma (3), Farysporium (1), Fulvisporium (1), Heterotolyposporium (1), Lundquistia (1), Macalpinomyces (4), Microbotryum (2), Moreaua (20), Pseudotracya (1), Restiosporium (5), Sporisorium (26), Thecaphora (2), Tilletia (12), Tolyposporella (1), Tranzscheliella (1), Urocystis (2), Ustanciosporium (1), Ustilago (22), Websdanea (1) and Yelsemia (2). About a half of these local and regional endemic species occur on grasses and a quarter on sedges.