Thermostable Nps As Biocatalysts for the Synthesis of Purine Nucleoside

Total Page:16

File Type:pdf, Size:1020Kb

Thermostable Nps As Biocatalysts for the Synthesis of Purine Nucleoside Thermostable Nucleoside Phosphorylases as Biocatalysts for the Synthesis of Purine Nucleoside Analogues Characterisation, immobilization and synthesis Xinrui Zhou, Berlin 2014 Thermostable Nucleoside Phosphorylases as Biocatalysts for the Synthesis of Purine Nucleoside Analogues Characterisation, immobilization and synthesis vorgelegt von M. Sc. Xinrui Zhou aus Kunming (China) von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer.nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender Prof. Dr. Roland Lauster Gutachter Prof. Dr. Peter Neubauer Gutachter Prof. Dr. Igor A. Mikhailopulo Gutachter Dr. habil. Roland Wohlgemuth Gutachter Prof. Dr. Vera Meyer Tag der wissenschaftlichen Aussprache: 14.02.2014 Berlin 2014 D83 The present work was performed from January 2011 to December 2013 in the Laboratory of Bioprocess Engineering at the Department of Biotechnology and at the Department of Chemistry, Technische Universität Berlin under the supervision of Prof. Dr. Peter Neubauer (Technische Universität Berlin) and Prof. Dr. Mikhailopulo (National Academy of Sciences of Belarus). When I consider Your heavens, the work of Your fingers, The moon and the stars, which You have ordained, What is man that You are mindful of him, and the son of man that You visit him? I will praise You, O Lord, with my whole heart; I will tell of all Your marvellous works. I will be glad and rejoice in You; I will sing praise to Your name, O Most High. Bible [Psalm 8:3-4, 9:1-2] Abstract i Abstract Nucleosides represent one class of fundamental building blocks of life systems. Their analogues are extensively used as therapeutic agents for cancer and viral diseases; as precursors of oligonucleotides for therapeutic or diagnostic use; and as molecular tools in research. However, many biologically active nucleosides are difficult to synthesize chemically, which hinders biological trials and studies as well as the application of these compounds. The chemo- enzymatic synthesis in comparison to the pure chemical synthesis offers great benefits as a simple, efficient and “green” technology in view of simplicity, costs and yield. The focus of this study was on the application of novel nucleoside phosphorylases (NPs) for the biocatalytic synthesis of nucleoside analogues. The applied enzymes originate from thermo- philic microorganisms (Deinococcus geothermalis, Geobacillus thermoglucosidasius, Thermus thermphilus, and Aeropyrum pernix). Five thermostable NPs (TtPyNP, GtPyNP, DgPNP, GtPNP and ApMTAP) were successfully recombinantly expressed in soluble and active form in the Gram-negative bacterium Escherichia coli, and were characterised with respect to temperature optimum, stability, substrate specificity, kinetic behaviour, pH optimum and in view of their similarity by sequence alignments. The results demonstrate their promising biocatalytic properties, especially for TtPyNP and GtPNP, which displayed particularly high catalytic activity towards natural substrates (3-6 times higher than the commonly used enzymes from E. coli) under the experimental conditions. Furthermore, they showed high promiscuity, i.e. they were able to catalyse a broad range of modified substrates. Both enzymes accept nucleosides modified in the sugar moiety, e.g. 2’- or 3’-NH2, 2’-F (ribo- or arabino-) and 2’-OH (arabino); GtPNP recognizes 2,6-Cl or F substituted purine. In coupled reactions with TtPyNP and GtPNP as catalysts various modified purine nucleosides were successfully synthesized. For the synthesis of purine nucleoside analogues, TtPyNP and GtPNP were successfully immobilized on magnetic microsphere beads with high residual enzyme activity, high enzyme loading, and further enhanced enzyme stability. The application of the immobilized enzymes in the synthesis of 2,6-dichloropurine riboside and 6-chloro-2-fluoropurine riboside (6C2FP-R) resulted in product yields of 78.5 % and 85.5 % (HPLC), the latter molecule was isolated and purified ( >98 %) by silica chromatography (normal-phase column) and the compound’s structure was confirmed. These results reveal the great practical potential of the studied biocatalysts. Hence, it is conceivable to produce a number of nucleoside analogues by the described method, which appears more efficient than other synthetic routes described in literature so far. ii Zusammenfassung Zusammenfassung Nukleoside sind bedeutende Bausteine lebender Systeme. Chemisch modifizierte Nukleoside sind hochwirksame Pharmaka für die Behandlung von Krebs und viralen Erkrankungen. Sie sind wichtige Werkzeuge in der Zellforschung, u.a. sind sie Vorstufen für die Herstellung von Oligonukleotiden für theapeutische und diagnostische Anwendungen. Allerdings ist die chemische Synthese von modifizierten Nukleosiden in den meisten Fällen kompliziert und mit niedrigen Ausbeuten verbunden, wodurch ihr Einsatz limitiert ist. Die chemo-enzymatische Synthese von Nukleosidanaloga bietet im Vergleich zur traditionellen chemischen Synthese als eine einfache und „grüne“ Technologie entscheidende Vorteile in Bezug auf Aufwand, Reaktionsausbeuten und Kosten. In der vorliegenden Arbeit liegt der Fokus auf neu isolierten Nukleosidphosphorylasen von verschiedenen thermophilen Mikroorganismen (Deinococcus geothermalis, Geobacillus thermoglucosidasius, Thermus thermophilus, Aeropyrum pernix). Fünf thermostabile Nukleosidphosphorylasen (TtPyNP, GtPyNP, DgPNP, GtPNP and ApMTAP) wurden rekombinant in dem Gram-negativen Bakterium Escherichia coli exprimiert, aufgereinigt und umfassend in Bezug auf die Temperatur- und pH Optima, Stabilität, Substratspezifität, ihr kinetisches Verhalten charaktersisiert, sowie ihre phylogenetische Sequenzähnlichkeit analysiert. Diese Charakteristika demonstrieren die vorteilhaften biokatalytischen Eigenschaften dieser Biokatalysatoren, welches besonders für die Enzyme TtPyNP und GtPNP zutrifft. Unter Reaktionsbedinungen, die für die biokatalytische Syntheses interessant sind, zeichnen sich diese Enzyme nicht nur durch eine hohe katalytische Aktivität gegenüber natürlichen Substraten aus, sondern auch durch ein hohes Maß an Promiskuität, d.h. eine große Anzahl modifizierter Verbindungen als Substrate nutzen können. Beide Enzyme akzeptieren Zucker, die z.B. in folgenden Positionen modifiziert sind: 2’- oder 3’-NH2, 2’-F (ribo- oder arabino-) und 2’-OH (arabino). GtPNP reagiert auch mit 2,6-Cl- oder F-substituierten Purinen. Zusammen können TtPyNP und GtPNP die Synthese verschiedener modifizierter Purinnukleoside katalysieren. Für die Anwendung wurden beide Enzyme auf magnetischen mikrospherischen Trägern immobilisiert. Die Immobilisate zeigten eine hohe Aktivität und eine hohe katalytische Dichte, sowie eine erhöhte Enzymstabilität. Bei der Anwendung dieser immobilisierten Biolkatalysatoren für die Synthese von Zusammenfassung iii 2,6-Dichloropurine Ribosid (2,6CP-R) und 6-Chloro-2-Fluoropurine Ribosid (6C2FP-R) wurden Produktausbeuten von 78.5 % bzw. 85.5 % erreicht. 6C2FP-R wurde auf >98% über eine Standard Silizium-Chromatographiesäule aufgereinigt und die Struktur verifiziert. Diese Ergebnisse zeigen das große praktische Potenzial der hier untersuchten Biokatalysatoren. Es ist daher naheliegend, dass einige biologisch wichtige Nucleosid durch das in dieser Arbeit beschriebene Verfahren effizienter als wie bisher in der Literatur beschrieben, hergestellt werden können. iv Acknowledgements Acknowledgements I am indebted to so many people for their encouragement and direct or indirect support which was essential for the successful completion of this research work. I am aware of that my words are so limit to express my deep gratitude and respect for all of them. I would like to express my greatest appreciation to my supervisor Professor Peter Neubauer. He offered me chance to work on my PhD in Germany and gave me this fascinating project. His brilliant ideas, endless energy, and his enthusiasm for biotechnology in both academic and industrial areas, greatly promotes the project progress. His constant encouragement, patient guidance and, especially during my thesis writing his kindness, gentleness and full support have touched me so much. I would like to express my deepest gratitude to my second supervisor Professor Igor A. Mikhailopulo, although we are separated by great distances, his unreserved long-last support, valuable and constructive suggestions come along with every move of the project. He also gave much attention and time to read, correct and make detailed comments on my reports and manuscripts. I cannot thank you more. I am grateful to my thesis committee members: Dr. Roland Wohlgemuth from Sigma-Aldrich, Professor Vera Meyer and Professor Roland Lauster from TU Berlin for their precious time and effort. Especially I am thankful to Dr. Roland Wohlgemuth for his great interests in this project and for our fruitful discussions through telephone conferences. His kind donation of the valuable intermediates a-D-Ribose-1-phosphate and 2’-deoxyl-a-D-ribose-1-phosphate allow us to investigate the reverse reactions in more details. I am very thankful to Kathleen Szeker for working closely with me in the first one and half years on this topic: we planning experiments together, discussing results together and sharing so many exciting moments together (e.g. watching the product peak appearing on the HPLC). I will not forget these happy memories. I am very appreciative towards my colleagues Jian Li and Jennifer Jaitzig for helping me on the LC/MS
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Characterization of Stress Tolerance and Metabolic Capabilities of Acidophilic Iron-Sulfur-Transforming Bacteria and Their Relevance to Mars
    Characterization of stress tolerance and metabolic capabilities of acidophilic iron-sulfur-transforming bacteria and their relevance to Mars Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Anja Bauermeister aus Leipzig Im Fachbereich Chemie der Universität Duisburg-Essen 2012 Die vorliegende Arbeit wurde im Zeitraum von März 2009 bis Dezember 2012 im Arbeitskreis von Prof. Dr. Hans-Curt Flemming am Biofilm Centre (Fakultät für Chemie) der Universität Duisburg-Essen und in der Abteilung Strahlenbiologie (Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln) durchgeführt. Tag der Einreichung: 07.12.2012 Tag der Disputation: 23.04.2013 Gutachter: Prof. Dr. H.-C. Flemming Prof. Dr. W. Sand Vorsitzender: Prof. Dr. C. Mayer Erklärung / Statement Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel „Characterization of stress tolerance and metabolic capabilities of acidophilic iron- sulfur-transforming bacteria and their relevance to Mars” selbst verfasst und keine außer den angegebenen Hilfsmitteln und Quellen benutzt habe, und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Universität eingereicht wurde. Herewith I declare that this thesis is the result of my independent work. All sources and auxiliary materials used by me in this thesis are cited completely. Essen, 07.12.2012 Table of contents Abbreviations .......................................................................................
    [Show full text]
  • Extremozymes of the Hot and Salty Halothermothrix Orenii
    Extremozymes of the Hot and Salty Halothermothrix orenii Author Kori, Lokesh D Published 2012 Thesis Type Thesis (PhD Doctorate) School School of Biomolecular and Physical Sciences DOI https://doi.org/10.25904/1912/2191 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366220 Griffith Research Online https://research-repository.griffith.edu.au Extremozymes of the hot and salty Halothermothrix orenii LOKESH D. KORI (M.Sc. Biotechnology) School of Biomolecular and Physical Sciences Science, Environment, Engineering and Technology Griffith University, Australia Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy December 2011 STATEMENT OF ORIGINALITY STATEMENT OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. LOKESH DULICHAND KORI II ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I owe my deepest gratitude to my supervisor Prof. Bharat Patel, for offering me an opportunity for being his postgraduate. His boundless knowledge motivates me for keep going and enjoy the essence of science. Without his guidance, great patience and advice, I could not finish my PhD program successfully. I take this opportunity to give my heartiest thanks to Assoc. Prof. Andreas Hofmann, (Structural Chemistry, Eskitis Institute for Cell & Molecular Therapies, Griffith University) for his support and encouragement for crystallographic work. I am grateful to him for teaching me about the protein structures, in silico analysis and their hidden chemistry.
    [Show full text]
  • The Effects of Natural Variation in Background Radioactivity on Humans, Animals and Other Organisms
    Biol. Rev. (2012), pp. 000–000. 1 doi: 10.1111/j.1469-185X.2012.00249.x The effects of natural variation in background radioactivity on humans, animals and other organisms Anders P. Møller1,∗ and Timothy A. Mousseau2 1Laboratoire d’Ecologie, Syst´ematique et Evolution, CNRS UMR 8079, Universit´e Paris-Sud, Bˆatiment 362, F-91405, Orsay Cedex, France 2Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA ABSTRACT Natural levels of radioactivity on the Earth vary by more than a thousand-fold; this spatial heterogeneity may suffice to create heterogeneous effects on physiology, mutation and selection. We review the literature on the relationship between variation in natural levels of radioactivity and evolution. First, we consider the effects of natural levels of radiation on mutations, DNA repair and genetics. A total of 46 studies with 373 effect size estimates revealed a small, but highly significant mean effect that was independent of adjustment for publication bias. Second, we found different mean effect sizes when studies were based on broad categories like physiology, immunology and disease frequency; mean weighted effect sizes were larger for studies of plants than animals, and larger in studies conducted in areas with higher levels of radiation. Third, these negative effects of radiation on mutations, immunology and life history are inconsistent with a general role of hormetic positive effects of radiation on living organisms. Fourth, we reviewed studies of radiation resistance among taxa. These studies suggest that current levels of natural radioactivity may affect mutational input and thereby the genetic constitution and composition of natural populations.
    [Show full text]
  • No. 13 Since Its Establishment in 2001, RIKEN Bioresource
    No. 13 Biological resources of thermophiles Thermus thermophilus, Aeropyrum pernix and Sulfolobus tokodaii in the Gene Engineering Division, RIKEN BioResource Center Takehide Murata, Masato Okubo, Shotaro Kishikawa, Yukari Kujime, Chitose Kurihara, Koji Nakade, Megumi Hirose, Satoko Masuzaki, Yuichi Obata (Gene Engineering Division, RIKEN BioResource Center) e-mail: [email protected] Since its establishment in 2001, RIKEN BioResource Center (RIKEN BRC) has successfully undertaken activities related to the collection, preservation and supply of biological resources with the three basic principles for the management of this Center: Trust, sustainability and Leadership. Since 2002, the Division has been selected as a core facility of DNA resources in Japan engaging in the collection, preservation, quality control and distribution of genetic materials such as plasmid, clone sets of bacterial artificial chromosome (BAC), recombinant adenovirus, expression vector, and host bacterium by National BioResource Project (NBRP) administrated by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. RIKEN BRC has executed a license agreement with the Life Technologies Corporation (former Invitrogen IP Holdings, Inc.) to receive, maintain, replicate and distribute Gateway® Entry clones and Expression clones. Your deposition of genetic resources to RIKEN BRC Gene Engineering Division is most appreciated. The RIKEN BRC is providing thermophile resources: expression clones, gene disruption clones, microbial strains and genomic DNAs. The expression clones and gene disruption clones was constructed and deposited by Dr. Seiki Kuramitsu and his colleague (RIKEN SPring-8 Center, Harima Inst./Osaka Univ.). The expression clones were established to express recombinant proteins of thermophiles in the E. coli. Expression clones of gene products of the Thermus thermophilus (about 1,800 clones) are available for distribution (http://www.brc.riken.jp/lab/dna/en/thermus_en.html).
    [Show full text]
  • Purification and Biochemical Properties of a Cytochrome Bc
    Kabashima and Sakamoto BMC Microbiology 2011, 11:52 http://www.biomedcentral.com/1471-2180/11/52 RESEARCHARTICLE Open Access Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix Yoshiki Kabashima1,2, Junshi Sakamoto1* Abstract Background: The bioenergetics of Archaea with respect to the evolution of electron transfer systems is very interesting. In contrast to terminal oxidases, a canonical bc1 complex has not yet been isolated from Archaea. In particular, c-type cytochromes have been reported only for a limited number of species. Results: Here, we isolated a c-type cytochrome-containing enzyme complex from the membranes of the hyperthermophilic archaeon, Aeropyrum pernix, grown aerobically. The redox spectrum of the isolated c-type cytochrome showed a characteristic a-band peak at 553 nm corresponding to heme C. The pyridine hemochrome spectrum also revealed the presence of heme B. In non-denaturing polyacrylamide gel electrophoresis, the cytochrome migrated as a single band with an apparent molecular mass of 80 kDa, and successive SDS-PAGE separated the 80-kDa band into 3 polypeptides with apparent molecular masses of 40, 30, and 25 kDa. The results of mass spectrometry indicated that the 25-kDa band corresponded to the hypothetical cytochrome c subunit encoded by the ORF APE_1719.1. In addition, the c-type cytochrome-containing polypeptide complex exhibited menaquinone: yeast cytochrome c oxidoreductase activities. Conclusion: In conclusion, we showed that A. pernix, a hyperthemophilic archaeon, has a “full” bc complex that includes a c-type cytochrome, and to the best of our knowledge, A. pernix is the first archaea from which such a bc complex has been identified.
    [Show full text]
  • Deinococcus Antarcticus Sp. Nov., Isolated from Soil
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 331–335 DOI 10.1099/ijs.0.066324-0 Deinococcus antarcticus sp. nov., isolated from soil Ning Dong,1,2 Hui-Rong Li,1 Meng Yuan,1,2 Xiao-Hua Zhang2 and Yong Yu1 Correspondence 1SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, Yong Yu PR China [email protected] 2College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m”2) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10T (93.5 %), Deinococcus xinjiangensis X-82T (92.8 %), Deinococcus indicus Wt/1aT (92.5 %), Deinococcus daejeonensis MJ27T (92.3 %), Deinococcus wulumuqiensis R-12T (92.3 %), Deinococcus aquaticus PB314T (92.2 %) and T Deinococcus radiodurans DSM 20539 (92.2 %). Major fatty acids were C18 : 1v7c, summed feature 3 (C16 : 1v7c and/or C16 : 1v6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • Title Genomic Analysis of the Marine Hyperthermophilic Archaeon
    Genomic analysis of the marine hyperthermophilic archaeon Title Aeropyrum( Dissertation_全文 ) Author(s) Daifuku, Takashi Citation 京都大学 Issue Date 2015-03-23 URL https://doi.org/10.14989/doctor.k19034 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-08-01に公開 Type Thesis or Dissertation Textversion ETD Kyoto University 1. General introduction Chapter 1 General introduction Gene repertoires and genome organizations differ between closely related microbial organisms depending on the ecological characteristics of each habitat (Cohan and Koeppel 2008). The cyanobacterial Prochlorococcus spp. account for a significant fraction of primary production in the ocean (Goericke and Welschmeyer 1993) and show physiological features relevant to the different ecological niches within a stratified oceanic water column (Moore et al. 1998; West et al. 2001). The whole-genomic comparisons of the Prochlorococcus spp. strains show gross signatures according to this niche differentiation (Rocap et al. 2003). Alpha-proteobacterium Pelagibacter ubique which belongs to the SAR11 clade in the phylogenetic tree based on the 16S rRNA gene is the most abundant microorganism in the ocean (Morris et al. 2002). The genomes of the SAR11 isolates are highly conserved in the core genes that are common to all strains (Medini et al. 2005) and show synteny (the conservation of DNA sequence and gene order) (Bentley and Parkhill 2004). However, variations exist among genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important for niche partitioning (Grote et al. 2012). This adaptation at the genomic level was also observed in archaea. The members of the genus Pyrococcus are anaerobic and hyperthermophilic archaea (Fiala and Stetter 1 1.
    [Show full text]
  • Tackling the Methanopyrus Kandleri Paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open Access Research2004BrochieretVolume al. 5, Issue 3, Article R17 Archaeal phylogeny based on proteins of the transcription and comment translation machineries: tackling the Methanopyrus kandleri paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo† Addresses: *Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France. †Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Céline Brochier. E-mail: [email protected] Published: 26 February 2004 Received: 14 November 2003 Revised: 5 January 2004 Genome Biology 2004, 5:R17 Accepted: 21 January 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/3/R17 reports © 2004 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. ArchaealPhylogeneticsequencedusingrespectively). two phylogeny concatenated genomes, analysis based it of is datasetsthe now on Archaea proteinspossible consisting has ofto been thetest of transcription alternative mainly14 proteins established approach involv and translationed byes in 16S bytranscription rRNAusing machineries: largesequence andsequence 53comparison.tackling ribosomal datasets. the Methanopyrus Withproteins We theanalyzed accumulation(3,275 archaealkandleri and 6,377 of phyparadox comp positions,logenyletely Abstract deposited research Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets.
    [Show full text]
  • Appendices Physico-Chemical
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. An Investigation of Microbial Communities Across Two Extreme Geothermal Gradients on Mt. Erebus, Victoria Land, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Master’s Degree of Science at The University of Waikato by Emily Smith Year of submission 2021 Abstract The geothermal fumaroles present on Mt. Erebus, Antarctica, are home to numerous unique and possibly endemic bacteria. The isolated nature of Mt. Erebus provides an opportunity to closely examine how geothermal physico-chemistry drives microbial community composition and structure. This study aimed at determining the effect of physico-chemical drivers on microbial community composition and structure along extreme thermal and geochemical gradients at two sites on Mt. Erebus: Tramway Ridge and Western Crater. Microbial community structure and physico-chemical soil characteristics were assessed via metabarcoding (16S rRNA) and geochemistry (temperature, pH, total carbon (TC), total nitrogen (TN) and ICP-MS elemental analysis along a thermal gradient 10 °C–64 °C), which also defined a geochemical gradient.
    [Show full text]