Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains" (2014)

Total Page:16

File Type:pdf, Size:1020Kb

Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Improved Internet Security Protocols Using Cryptographic One- Way Hash Chains Amerah Alabrah University of Central Florida Part of the Computer Sciences Commons, and the Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Alabrah, Amerah, "Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains" (2014). Electronic Theses and Dissertations, 2004-2019. 4599. https://stars.library.ucf.edu/etd/4599 IMPROVED INTERNET SECURITY PROTOCOLS USING CRYPTOGRAPHIC ONE-WAY HASH CHAINS by AMERAH ABDULRAHMAN ALABRAH B.S. King Saud University, 2006 M.S. Colorado State University, 2008 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2014 Major Professor: Mostafa Bassiouni © 2014 Amerah Alabrah ii ABSTRACT In this dissertation, new approaches that utilize the one-way cryptographic hash functions in designing improved network security protocols are investigated. The proposed approaches are designed to be scalable and easy to implement in modern technology. The first contribution explores session cookies with emphasis on the threat of session hijacking attacks resulting from session cookie theft or sniffing. In the proposed scheme, these cookies are replaced by easily computed authentication credentials using Lamport’s well-known one-time passwords. The basic idea in this scheme revolves around utilizing sparse caching units, where authentication credentials pertaining to cookies are stored and fetched once needed, thereby, mitigating computational overhead generally associated with one-way hash constructions. The second and third proposed schemes rely on dividing the one-way hash construction into a hierarchical two-tier construction. Each tier component is responsible for some aspect of authentication generated by using two different hash functions. By utilizing different cryptographic hash functions arranged in two tiers, the hierarchical two-tier protocol (our second contribution) gives significant performance improvement over previously proposed solutions for securing Internet cookies. Through indexing authentication credentials by their position within the hash chain in a multi-dimensional chain, the third contribution achieves improved performance. In the fourth proposed scheme, an attempt is made to apply the one-way hash construction to achieve user and broadcast authentication in wireless sensor networks. Due to iii known energy and memory constraints, the one-way hash scheme is modified to mitigate computational overhead so it can be easily applied in this particular setting. The fifth scheme tries to reap the benefits of the sparse cache-supported scheme and the hierarchical scheme. The resulting hybrid approach achieves efficient performance at the lowest cost of caching possible. In the sixth proposal, an authentication scheme tailored for the multi-server single sign- on (SSO) environment is presented. The scheme utilizes the one-way hash construction in a Merkle Hash Tree and a hash calendar to avoid impersonation and session hijacking attacks. The scheme also explores the optimal configuration of the one-way hash chain in this particular environment. All the proposed protocols are validated by extensive experimental analyses. These analyses are obtained by running simulations depicting the many scenarios envisioned. Additionally, these simulations are supported by relevant analytical models derived by mathematical formulas taking into consideration the environment under investigation. iv To My Father v ACKNOWLEDGMENT This dissertation would not have been possible without the guidance of my committee, the help and support from friends and the love and encouragement of my family and loved ones. First and foremost I am truly indebted to my advisor Dr. Mostafa Bassiouni who, from the very first day he met me, has shown me how a true scholar should really be. He never spared me his guidance, his support and his encouragement. He has been and will always be my true mentor. To him, I am grateful. I am also thankful to my committee members, Dr. Sheau-Dong Lang, Dr. Cliff C. Zou and Dr. Yuanli Bai for their invaluable comments and suggestions throughout my dissertation writing process. I also would like to thank my friends and colleagues in the Department of Computer Science and Engineering who provided me with a nurturing and fruitful research environment. I am also truly grateful to have known my best friend Sana Tariq during my years in the department. We have been together through the best and worst of times, and she has shown me how a true friend really should be. I would like to thank my family for providing me with the support I needed. My mother has been keeping me up thorough this experience by her daily phone calls to cheer me up. My brothers and sister have provided me with their love, encouragement and sense of humor. I would also like to thank my soul mate and my friend, Husam Alawadh, my husband, who have never quit on believing on me and supported me take this route from the day we met. One final word of gratitude goes to someone who has always waited for this moment, a person whom I always dreamt of writing these words to, a person who saw his dream in me, but vi left before I made it in reality; my father. I am sorry I couldn’t make this earlier, but I know that you hear me. Thank you is not enough! vii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................ xiii LIST OF TABLES ................................................................................................................................... xvi CHAPTER 1: INTRODUCTION ............................................................................................................ 1 1.1 One-way Hashing ................................................................................................................................ 2 1.2 Problem Statement ............................................................................................................................ 5 1.3 Contributions ........................................................................................................................................ 7 1.4 Dissertation Organization ............................................................................................................. 10 CHAPTER 2: REVIEW OF THE LITERATURE ............................................................................ 12 2.1 Introduction ........................................................................................................................................ 12 2.2 Securing Session Cookies .............................................................................................................. 15 2.3 What Are Cookies? ........................................................................................................................... 16 2.4 Current Practices .............................................................................................................................. 17 2.5 New Direction .................................................................................................................................... 19 2.6 The One-way Hash Chain Model ................................................................................................. 21 2.7 User and Broadcast Authentication in Wireless Sensor Networks .............................. 24 2.8 Authentication in Single Sign-On Environments ................................................................. 25 2.9 Authenticating Cloud-based Toll/Traffic RFID Systems .................................................. 28 CHAPTER 3: HASH CHAIN (HACH) WITH SPARSE CACHING TECHNIQUES ................ 31 3.1 Introduction ........................................................................................................................................ 31 3.2 Sparse Caching: Basic Idea ............................................................................................................ 31 3.2.1 Sparse Caching with Uniform Spacing ................................................................................ 32 viii 3.2.2 Weighted Overhead Formula ................................................................................................. 34 3.2.3 Uncertainty in the Number of Transactions ..................................................................... 35 3.2.4 Sparse Caching with Non-uniform Spacing ...................................................................... 36 3.2.5 Caching with Geometric Spacing ........................................................................................... 37 3.3 Energy Consumption ....................................................................................................................... 39 3.4 Evaluation and
Recommended publications
  • Angela: a Sparse, Distributed, and Highly Concurrent Merkle Tree
    Angela: A Sparse, Distributed, and Highly Concurrent Merkle Tree Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera, Cibi Pari Abstract— Merkle trees allow for efficient and authen- with high query throughput. Any concurrency overhead ticated verification of data contents through hierarchical should not destroy the system’s performance when the cryptographic hashes. Because the contents of parent scale of the merkle tree is very large. nodes in the trees are the hashes of the children nodes, Outside of Key Transparency, this problem is gen- concurrency in merkle trees is a hard problem. The eralizable to other applications that have the need current standard for merkle tree updates is a naive locking of the entire tree as shown in Google’s merkle tree for efficient, authenticated data structures, such as the implementation, Trillian. We present Angela, a concur- Global Data Plane file system. rent and distributed sparse merkle tree implementation. As a result of these needs, we have developed a novel Angela is distributed using Ray onto Amazon EC2 algorithm for updating a batch of updates to a merkle clusters and uses Amazon Aurora to store and retrieve tree concurrently. Run locally on a MacBook Pro with state. Angela is motivated by Google Key Transparency a 2.2GHz Intel Core i7, 16GB of RAM, and an Intel and inspired by it’s underlying merkle tree, Trillian. Iris Pro1536 MB, we achieved a 2x speedup over the Like Trillian, Angela assumes that a large number of naive algorithm mentioned earlier. We expanded this its 2256 leaves are empty and publishes a new root after algorithm into a distributed merkle tree implementation, some amount of time.
    [Show full text]
  • Enabling Authentication of Sliding Window Queries on Streams
    Proof­Infused Streams: Enabling Authentication of Sliding Window Queries On Streams Feifei Li† Ke Yi‡ Marios Hadjieleftheriou‡ George Kollios† †Computer Science Department Boston University ‡AT&T Labs Inc. lifeifei, gkollios @cs.bu.edu yike, marioh @research.att.com { } { } ABSTRACT As computer systems are essential components of many crit- ical commercial services, the need for secure online transac- . tions is now becoming evident. The demand for such appli- cations, as the market grows, exceeds the capacity of individ- 0110..011 ual businesses to provide fast and reliable services, making Provider Servers outsourcing technologies a key player in alleviating issues Clients of scale. Consider a stock broker that needs to provide a real-time stock trading monitoring service to clients. Since Figure 1: The outsourced stream model. the cost of multicasting this information to a large audi- ence might become prohibitive, the broker could outsource providers, who would be in turn responsible for forwarding the stock feed to third-party providers, who are in turn re- the appropriate sub-feed to clients (see Figure 1). Evidently, sponsible for forwarding the appropriate sub-feed to clients. especially in critical applications, the integrity of the third- Evidently, in critical applications the integrity of the third- party should not be taken for granted, as the latter might party should not be taken for granted. In this work we study have malicious intent or might be temporarily compromised a variety of authentication algorithms for selection and ag- by other malicious entities. Deceiving clients can be at- gregation queries over sliding windows. Our algorithms en- tempted for gaining business advantage over the original able the end-users to prove that the results provided by the service provider, for competition purposes against impor- third-party are correct, i.e., equal to the results that would tant clients, or for easing the workload on the third-party have been computed by the original provider.
    [Show full text]
  • Providing Authentication and Integrity in Outsourced Databases Using Merkle Hash Tree’S
    Providing Authentication and Integrity in Outsourced Databases using Merkle Hash Tree's Einar Mykletun Maithili Narasimha University of California Irvine University of California Irvine [email protected] [email protected] Gene Tsudik University of California Irvine [email protected] 1 Introduction In this paper we intend to describe and summarize results relating to the use of authenticated data structures, specifically Merkle Hash Tree's, in the context of the Outsourced Database Model (ODB). In ODB, organizations outsource their data management needs to an external untrusted service provider. The service provider hosts clients' databases and offers seamless mechanisms to create, store, update and access (query) their databases. Due to the service provider being untrusted, it becomes imperative to provide means to ensure authenticity and integrity in the query replies returned by the provider to clients. It is therefore the goal of this paper to outline an applicable data structure that can support authenticated query replies from the service provider to the clients (who issue the queries). Merkle Hash Tree's (introduced in section 3) is such a data structure. 1.1 Outsourced Database Model (ODB) The outsourced database model (ODB) is an example of the well-known Client-Server model. In ODB, the Database Service Provider (also referred to as the Server) has the infrastructure required to host outsourced databases and provides efficient mechanisms for clients to create, store, update and query the database. The owner of the data is identified as the entity who has to access to add, remove, and modify tuples in the database. The owner and the client may or may not be the same entity.
    [Show full text]
  • The SCADS Toolkit Nick Lanham, Jesse Trutna
    The SCADS Toolkit Nick Lanham, Jesse Trutna (it’s catching…) SCADS Overview SCADS is a scalable, non-relational datastore for highly concurrent, interactive workloads. Scale Independence - as new users join No changes to application Cost per user doesn’t increase Request latency doesn’t change Key Innovations 1. Performance safe query language 2. Declarative performance/consistency tradeoffs 3. Automatic scale up and down using machine learning Toolkit Motivation Investigated other open-source distributed key-value stores Cassandra, Hypertable, CouchDB Monolithic, opaque point solutions Make many decisions about how to architect the system a -prori Want set of components to rapidly explore the space of systems’ design Extensible components communicate over established APIs Understand the implications and performance bottlenecks of different designs SCADS Components Component Responsibilities Storage Layer Persist and serve data for a specified key responsibility Copy and sync data between storage nodes Data Placement Layer Assign node key responsibilities Manage replication and partition factors Provide clients with key to node mapping Provides mechanism for machine learning policies Client Library Hides client interaction with distributed storage system Provides higher-level constructs like indexes and query language Storage Layer Key-value store that supports range queries built on BDB API Record get(NameSpace ns, RecordKey key) list<Record> get_set (NameSpace ns, RecordSet rs ) bool put(NameSpace ns, Record rec) i32 count_set(NameSpace ns, RecordSet rs) bool set_responsibility_policy(NameSpace ns,RecordSet policy) RecordSet get_responsibility_policy(NameSpace ns) bool sync_set(NameSpace ns, RecordSet rs, Host h, ConflictPolicy policy) bool copy_set(NameSpace ns, RecordSet rs, Host h) bool remove_set(NameSpace ns, RecordSet rs) Storage Layer Storage Layer Storage Layer: Synchronize Replicas may diverge during network partitions (in order to preserve availability).
    [Show full text]
  • Authentication of Moving Range Queries
    Authentication of Moving Range Queries Duncan Yung Eric Lo Man Lung Yiu ∗ Department of Computing Hong Kong Polytechnic University {cskwyung, ericlo, csmlyiu}@comp.polyu.edu.hk ABSTRACT the user leaves the safe region, Thus, safe region is a powerful op- A moving range query continuously reports the query result (e.g., timization for significantly reducing the communication frequency restaurants) that are within radius r from a moving query point between the user and the service provider. (e.g., moving tourist). To minimize the communication cost with The query results and safe regions returned by LBS, however, the mobile clients, a service provider that evaluates moving range may not always be accurate. For instance, a hacker may infiltrate queries also returns a safe region that bounds the validity of query the LBS’s servers [25] so that results of queries all include a partic- results. However, an untrustworthy service provider may report in- ular location (e.g., the White House). Furthermore, the LBS may be correct safe regions to mobile clients. In this paper, we present effi- self-compromised and thus ranks sponsored facilities higher than cient techniques for authenticating the safe regions of moving range actual query result. The LBS may also return an overly large safe queries. We theoretically proved that our methods for authenticat- region to the clients for the sake of saving computing resources and ing moving range queries can minimize the data sent between the communication bandwidth [22, 16, 30]. On the other hand, the LBS service provider and the mobile clients. Extensive experiments are may opt to return overly small safe regions so that the clients have carried out using both real and synthetic datasets and results show to request new safe regions more frequently, if the LBS charges fee that our methods incur small communication costs and overhead.
    [Show full text]
  • Executing Large Scale Processes in a Blockchain
    The current issue and full text archive of this journal is available on Emerald Insight at: www.emeraldinsight.com/2514-4774.htm JCMS 2,2 Executing large-scale processes in a blockchain Mahalingam Ramkumar Department of Computer Science and Engineering, Mississippi State University, 106 Starkville, Mississippi, USA Received 16 May 2018 Revised 16 May 2018 Abstract Accepted 1 September 2018 Purpose – The purpose of this paper is to examine the blockchain as a trusted computing platform. Understanding the strengths and limitations of this platform is essential to execute large-scale real-world applications in blockchains. Design/methodology/approach – This paper proposes several modifications to conventional blockchain networks to improve the scale and scope of applications. Findings – Simple modifications to cryptographic protocols for constructing blockchain ledgers, and digital signatures for authentication of transactions, are sufficient to realize a scalable blockchain platform. Originality/value – The original contributions of this paper are concrete steps to overcome limitations of current blockchain networks. Keywords Cryptography, Blockchain, Scalability, Transactions, Blockchain networks Paper type Research paper 1. Introduction A blockchain broadcast network (Bozic et al., 2016; Croman et al., 2016; Nakamoto, 2008; Wood, 2014) is a mechanism for creating a distributed, tamper-proof, append-only ledger. Every participant in the broadcast network maintains a copy, or some representation, of the ledger. Ledger entries are made by consensus on the states of a process “executed” on the blockchain. As an example, in the Bitcoin (Nakamoto, 2008) process: (1) Bitcoin transactions transfer Bitcoins from a wallet to one or more other wallets. (2) Bitcoins created by “mining” are added to the miner’s wallet.
    [Show full text]
  • IB Case Study Vocabulary a Local Economy Driven by Blockchain (2020) Websites
    IB Case Study Vocabulary A local economy driven by blockchain (2020) Websites Merkle Tree: https://blockonomi.com/merkle-tree/ Blockchain: https://unwttng.com/what-is-a-blockchain Mining: https://www.buybitcoinworldwide.com/mining/ Attacks on Cryptocurrencies: https://blockgeeks.com/guides/hypothetical-attacks-on-cryptocurrencies/ Bitcoin Transaction Life Cycle: https://ducmanhphan.github.io/2018-12-18-Transaction-pool-in- blockchain/#transaction-pool 51 % attack - a potential attack on a blockchain network, where a single entity or organization can control the majority of the hash rate, potentially causing a network disruption. In such a scenario, the attacker would have enough mining power to intentionally exclude or modify the ordering of transactions. Block - records, which together form a blockchain. ... Blocks hold all the records of valid cryptocurrency transactions. They are hashed and encoded into a hash tree or Merkle tree. In the world of cryptocurrencies, blocks are like ledger pages while the whole record-keeping book is the blockchain. A block is a file that stores unalterable data related to the network. Blockchain - a data structure that holds transactional records and while ensuring security, transparency, and decentralization. You can also think of it as a chain or records stored in the forms of blocks which are controlled by no single authority. Block header – main way of identifying a block in a blockchain is via its block header hash. The block hash is responsible for block identification within a blockchain. In short, each block on the blockchain is identified by its block header hash. Each block is uniquely identified by a hash number that is obtained by double hashing the block header with the SHA256 algorithm.
    [Show full text]
  • Efficient Verification of Shortest Path Search Via Authenticated Hints Man Lung YIU Hong Kong Polytechnic University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Knowledge at Singapore Management University Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Information Systems School of Information Systems 3-2010 Efficient Verification of Shortest Path Search Via Authenticated Hints Man Lung YIU Hong Kong Polytechnic University Yimin LIN Singapore Management University, [email protected] Kyriakos MOURATIDIS Singapore Management University, [email protected] DOI: https://doi.org/10.1109/ICDE.2010.5447914 Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific omputC ing Commons Citation YIU, Man Lung; LIN, Yimin; and MOURATIDIS, Kyriakos. Efficient Verification of Shortest Path Search Via Authenticated Hints. (2010). ICDE 2010: IEEE 26th International Conference on Data Engineering: Long Beach, California, USA, 1 - 6 March 2010. 237-248. Research Collection School Of Information Systems. Available at: https://ink.library.smu.edu.sg/sis_research/507 This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore Management University.
    [Show full text]
  • Redactable Hashing for Time Verification
    Technical Disclosure Commons Defensive Publications Series January 2021 Redactable Hashing for Time Verification Jan Schejbal Follow this and additional works at: https://www.tdcommons.org/dpubs_series Recommended Citation Schejbal, Jan, "Redactable Hashing for Time Verification", Technical Disclosure Commons, (January 24, 2021) https://www.tdcommons.org/dpubs_series/3999 This work is licensed under a Creative Commons Attribution 4.0 License. This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. Schejbal: Redactable Hashing for Time Verification REDACTABLE HASHING FOR TIME VERIFICATION Cryptographic hashes (outputs of cryptographically secure hash functions) are used to uniquely identify secret information without making such information public. A cryptographic hash function is a deterministic computation that produces the same outputs for the same inputs while ensuring that even a small change of the input (e.g., a change of only one or several bits) results in an unpredictable output that has little resemblance to the original (unmodified) input. Furthermore, it is not possible to efficiently find an input matching a certain hash value or two different inputs having the same hash value; an attacker that attempts to do so would need to test numerous values until one matches, which is computationally infeasible for a sufficiently large space of possible values. The quasi-randomness property of hashes makes them useful for mapping protected information while ensuring that the information is not easily discoverable by a malicious attacker or an unauthorized viewer. Hashes can be used to derive cryptographic keys from other (strong or even weak) cryptographic material.
    [Show full text]
  • Keyless Signature Infrastructure for Digital India's Security
    ISSN (Online) 2456 -1304 International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 10, October 2019 Keyless Signature Infrastructure for Digital India’s Security [1] Mridul Sharma, [2]Rupali Sharma [1][2] University Institute of Engineering, Rayat Bahra University, Mohali, Punjab, India Abstract— In the making of new Digital India there are lots of threats which are there in the path of this dream. Acts of data breach of AADHAAR and Bank Accounts due to the lack of security in our digital services are common but the world is now, moving towards digital era so to be with the world in this digital transformation we must work on our security enhancement to provide a secure platform to government organisations. To serve the three aspects of security that is confidentiality, integrity, and availability of data we need an infrastructure that ensures all these. The Blockchain-Based KSI is the new technology which will support the government of India to achieve its goal of ensuring secure digital Services. It will help the government in providing strong authentication through digital signatures, and will also give the citizens a trust that their PII data is secure and confidential so that they can use these digital services for their all daily work. On the inspiration from Estonia where all their government services are digital in a way such that every government work from issuing a birth certificate to passport verification all these tasks are done digitally. This paper is made to help India in the implementation of this powerful Infrastructure for the digital governmental services providing ease to people and bureaucrats.
    [Show full text]
  • Keyless Signatures' Infrastructure
    Keyless Signatures' Infrastructure: How to Build Global Distributed Hash-Trees Ahto Buldas1;2, Andres Kroonmaa1, and Risto Laanoja1;2 1 GuardTime AS, Tammsaare tee 60, 11316 Tallinn, Estonia. 2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia. Abstract. Keyless Signatures Infrastructure (KSI) is a globally dis- tributed system for providing time-stamping and server-supported digi- tal signature services. Global per-second hash trees are created and their root hash values published. We discuss some service quality issues that arise in practical implementation of the service and present solutions for avoiding single points of failure and guaranteeing a service with reason- able and stable delay. Guardtime AS has been operating a KSI Infras- tructure for 5 years. We summarize how the KSI Infrastructure is built, and the lessons learned during the operational period of the service. 1 Introduction Keyless signatures are an alternative solution to traditional PKI signatures. The word keyless does not mean that no cryptographic keys are used during the signature creation. Keys are still necessary for authentication, but the signatures can be reliably verified without assuming continued secrecy of the keys. Keyless signatures are not vulnerable to key compromise and hence provide a solution to the long-term validity of digital signatures. The traditional PKI signatures may be protected by timestamps, but as long as the time-stamping technology itself is PKI-based, the problem of key compromise is still not solved completely. Keyless signatures are a solution to this problem. In a keyless signature system, the functions of signer identification and of evidence integrity pro- tection are separated and delegated to cryptographic tools suitable for those functions.
    [Show full text]
  • Block Chain Based KSI for Delivering Governmental Services in Democratic Nations
    International Journal of Recent Engineering Research and Development (IJRERD) ISSN: 2455-8761 www.ijrerd.com || Volume 03 – Issue 07 || July 2018 || PP. 15-24 Block chain based KSI for delivering governmental services in democratic nations Vedna Sharma Junior Research Fellow Institute of Technology Management (Defense Research & Development Organization) Landour Cantt. Mussoorie Uttarakhand (India) Abstract: There are various challenges that government organizations are addressing naturally characterized by transparency and security in government records, improved confidentiality and integrity of data, secure transactions and information security. Government has to be choosing the design that best fits for balancing security and central control with the convenience and opportunity of sharing information or data between organizations and individuals. Government Organizations are also investing in digital technologies to support their goals. Significant investment in technology and efforts has yielded great progress in growth, efficiency & demand of organizations. Block chain stands out as a technology in which various organizations see potential to solve these challenges by implementing strong authentication, data encryption and digital signature. Keywords: Blockchain, Digital Signature, Hashing, public key Infrastructure, Keyless Signature Infrastructure and Governmental Services 1. Introduction Blockchain is decentralized technology that is built on the model of offering security and trust. Blockchain technology have the potential to help governments to collect taxes, deliver benefits, issue passports, record land registries, assure the supply chain of goods and generally ensure the integrity of government records and services. Blockchain technology can simplify the management of trusted information, making it easier for government agencies to access and use critical public-sector data while maintaining the security of this information.
    [Show full text]