Biomarkers of Response and Resistance to DNA Repair Targeted Therapies Elizabeth H

Total Page:16

File Type:pdf, Size:1020Kb

Biomarkers of Response and Resistance to DNA Repair Targeted Therapies Elizabeth H Published OnlineFirst September 27, 2016; DOI: 10.1158/1078-0432.CCR-16-0247 Review Clinical Cancer Research Biomarkers of Response and Resistance to DNA Repair Targeted Therapies Elizabeth H. Stover1, Panagiotis A. Konstantinopoulos1, Ursula A. Matulonis1, and Elizabeth M. Swisher2 Abstract Drugs targeting DNA damage repair (DDR) pathways are repair targeted agents currently in clinical trials and the exciting new agents in cancer therapy. Many of these drugs emerging biomarkers of response and resistance to these exhibit synthetic lethality with defects in DNA repair in agents: genetic and genomic analysis of DDR pathways, cancer cells. For example, ovarian cancers with impaired genomic signatures of mutational processes, expression of homologous recombination DNA repair show increased DNA repair proteins, and functional assays for DNA repair sensitivity to poly(ADP-ribose) polymerase (PARP) inhibi- capacity. We review biomarkers that may predict response to tors. Understanding the activity of different DNA repair selected DNA repair targeted agents, including PARP inhibi- pathways in individual tumors, and the correlations between tors, inhibitors of the DNA damage sensors ATM and ATR, DNA repair function and drug response, will be critical to and inhibitors of nonhomologous end joining. Finally, we patient selection for DNA repair targeted agents. Genomic introduce emerging categories of drugs targeting DDR and and functional assays of DNA repair pathway activity are new strategies for integrating DNA repair targeted therapies being investigated as potential biomarkers of response to into clinical practice, including combination regimens. Gen- targeted therapies. Furthermore, alterations in DNA repair erating and validating robust biomarkers will optimize the function generate resistance to DNA repair targeted agents, efficacy of DNA repair targeted therapies and maximize their and DNA repair states may predict intrinsic or acquired drug impact on cancer treatment. Clin Cancer Res; 22(23); 1–10. resistance. In this review, we provide an overview of DNA Ó2016 AACR. Introduction nomas (OC) exhibit dysfunctional HRR (7–10), colon and endo- metrial cancers are enriched in MMR defects (11), bladder cancers Normal and cancer cells rely on multiple DNA damage response have frequent NER mutations (12), and testicular germ cell (DDR) pathways specialized to repair specific forms of DNA tumors may be functionally deficient in NER and other DDR damage (Table 1; refs. 1–4). Key pathways include base excision pathways (13, 14). Many biomarkers for response to DNA repair repair (BER), nucleotide excision repair (NER), mismatch repair targeted therapies reflect specific alterations in DDR pathways or (MMR), homologous recombination repair (HRR), nonhomolo- genomic signatures resulting from aberrant repair. gous end-joining (NHEJ), and interstrand crosslink repair (ICL). If Cytotoxic chemotherapies induce particular forms of DNA canonical repair pathways are deficient, or repair is unsuccessful, damage that trigger specific repair pathways. Therefore, cancers error-prone alternative pathways may be employed (e.g., alt-NHEJ, with DNA repair deficiencies show increased sensitivity to certain single-strand annealing, or translesion synthesis; refs. 1–4). chemotherapeutics. For instance, OC patients with germline DNA repair targeted therapies exploit DNA repair defects in BRCA1 or BRCA2 (BRCA1/2) mutations (HRR deficiency) and cancer cells to generate synthetic lethality (cell death resulting from bladder cancer patients with somatic ERCC2 mutations (NER simultaneous loss or inhibition of two critical functions; for pathway) are more sensitive to platinum agents (15), likely due to example, cancer cells defective in one DNA repair pathway rely decreased capacity to repair platinum-induced DNA damage. on alternate repair pathways; inhibition of a second repair path- HRR and BER deficiencies sensitize cancer cells to topoisomer- way then results in cell death, an effect which selectively targets ase-I inhibitors (e.g., topotecan), whereas HRR and NHEJ defi- repair-deficient cancer cells; refs. 5, 6). DNA repair defects vary by ciencies sensitize to topoisomerase-II inhibitors (e.g., doxorubi- cancer type. For example, approximately 50% of ovarian carci- cin and etoposide; ref. 16). HRR deficiency confers sensitivity to inhibitors of the PARP enzyme, which is vital to several DNA repair pathways, including 1 2 Dana-Farber Cancer Institute, Boston, Massachusetts. University of Washing- BER and NHEJ. Developing biomarkers of DDR function and ton, Seattle, Washington. correlating DNA repair capacity with sensitivity to targeted agents Note: Supplementary data for this article are available at Clinical Cancer is critical to optimizing efficacy of targeted DNA repair drugs. In Research Online (http://clincancerres.aacrjournals.org/). this review, we describe candidate biomarkers of response (and Corresponding Author: Elizabeth M. Swisher, University of Washington, 1959 NE resistance) to DNA repair targeted therapies. Genomic sequencing Pacific Street, Seattle, WA 98195. Phone: 206-543-3669; Fax: 206-543-8315; studies have demonstrated frequent DDR alterations in diverse E-mail: [email protected] cancers, suggesting that DNA repair targeted agents may be doi: 10.1158/1078-0432.CCR-16-0247 broadly active in cancer therapy and highlighting the need for Ó2016 American Association for Cancer Research. accurate biomarkers of response (17, 18). www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst September 27, 2016; DOI: 10.1158/1078-0432.CCR-16-0247 Stover et al. Table 1. DDR pathways and associated signaling pathways Inhibitors of Mechanism Type of damage Function Key genes pathway proteins DNA damage recognition, signaling, and checkpoints DNA double-strand – Double-strand breaks (DSB) – Recognition of DNA damage and MRN complex: MRE11, PARP inhibitors break recognition recruitment of repair machinery RAD50, NBN (NBS1) MRE11 inhibitors RBBP8 (CTIP) (e.g., mirin) PARP1 DNA repair Various – Coordination of cell cycle with DNA repair ATM ATM inhibitors checkpoints – Induction of cell death for irreparable ATR ATR inhibitors lesions CHEK1 (Chk1) Chk1/2 inhibitors CHEK2 (Chk2) Wee1 inhibitors TP53 (p53) H2AFX (Histone H2A.X) Cell-cycle Various – Regulate cell cycle to allow time for DNA Genes encoding cyclin/ CDK inhibitors checkpoints repair activities and coordinate repair CDK proteins with progression through cell cycle Replication stress – Slowing/stalling of replicative DNA – Stabilization of stalled replication forks and RPA1, RPA2 ATR inhibitors response polymerase progression due to a DNA repair to enable replication restart. ATR Chk1 inhibitors variety of cellular stresses, resulting in If this fails, DNA damage (e.g., DSBs) ATRIP stalled replication forks. can result. CHEK1 (Chk1) TOPBP1 DNA repair pathways Direct repair – Base modifications, including – Direct repair of modified bases by MGMT MGMT inhibitors O6-methylguanine, 1-methyladenine, enzymatic processes: demethylation ALKBH1 3-methylcytosine, and N-methylated adenosine and cytosine – Examples: alkylating agents Base excision repair – Damaged and modified bases – Excision of damaged base to generate a OGG1 APE-1 inhibitors (BER) – Single-strand breaks basic site, followed by nicking, resynthesis, NEIL1, NEIL2, NEIL3 PARP inhibitors – Short patch repair – Examples: radiotherapy, and single-strand break repair (SSBR) APEX1 PNKP inhibitors – Long patch repair alkylating agents PARP1, PARP2 POLB inhibitors – Single-strand XRCC1 break repair POLB LIG1 LIG3 FEN1 PNKP MUTYH Nucleotide excision – Bulky DNA adducts – Damage recognition and unwinding of RAD23B repair (NER) – Inter- and intrastrand crosslinks local DNA, nuclease excision, DDB1 – Transcription- – Examples: platinum agents, resynthesis, and SSBR RPA1, RPA2 coupled NER ultraviolet (UV) light ERCC1, ERCC2 (XPD), – Global NER ERCC3, ERCC5, ERCC6, ERCC8 GTF2H1, GTF2H2, GTF2H4, GTF2H5, GTF2F2 CDK7 MMS19 MNAT1 XPA, XPC CCNH PCNA RFC1 Mismatch repair – Base mismatches (single nucleotide – Recognition and removal of mismatched MLH1 (MMR) mutations and small insertions/ base followed by resynthesis of correct MLH3 deletions) base and SSBR MSH2 – Examples: alkylating agents, MSH6 replication errors PMS2 Homologous – Double-strand breaks – Unwinding and resection at DSB to BRCA1 RAD51/2 recombination – Examples: radiation, topoisomerase generate single-strand end, strand BRCA2 inhibitors repair (HRR) inhibitors, cisplatin invasion, homologous recombination with RAD51, RAD52 BLM inhibitors sister chromatid, resynthesis, and TP53BP1 resolution. Results in exact repair using RBBP8 (CTIP) sequences from sister chromatid. EXO1 RPA1, RPA2 BLM PALB2 MRN complex: MRE11, RAD50, NBN (NBS1) (Continued on the following page) OF2 Clin Cancer Res; 22(23) December 1, 2016 Clinical Cancer Research Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst September 27, 2016; DOI: 10.1158/1078-0432.CCR-16-0247 Biomarkers of DNA Repair Targeted Therapies Table 1. DDR pathways and associated signaling pathways (Cont'd ) Inhibitors of Mechanism Type of damage Function Key genes pathway proteins Interstrand crosslink – Interstrand crosslinks – Crosslinks are excised and then repaired BRCA2 repair (ICL) – Examples: platinum agents, nitrogen by HRR (or other mechanisms) FANCA mustards, mitomycin
Recommended publications
  • BRIP1, BRCA1 Interacting Protein C-Terminal Helicase 1 Polyclonal Antibody
    BRIP1, BRCA1 interacting protein C-terminal helicase 1 polyclonal antibody RCA1 interacts in vivo with BRCA1 interacting protein C-terminal helicase 1 (BRIP1) also called BACH1, is a member of the or Research Use Only. Not for B FDiagnostic or Therapeutic Use. RecQ DEAH helicase family and interacts with the BRCT repeats of Purchase does not include or carry the breast cancer type 1 protein (BRCA1). Helicases of the RecQ any right to resell or transfer this DEAH family have been shown to be important for the maintenance product either as a stand-alone of genomic integrity in prokaryotes and eukaryotes. Members of this product or as a component of another family are genes responsible for cancer predisposition disorders like product. Any use of this product other Bloom’s syndrome, Werner’s syndrome and Rothmund-Thomson than the permitted use without the syndrome. The BRCA1/BRIP complex is important in the normal express written authorization of Allele double-strand break repair function of BRCA1. Since mutations in Biotech is strictly prohibited BRIP1 interfere with normal double-strand break repair in a manner that is dependent on its BRCA1 binding function, BRIP1 may be a target of germline cancer-inducing mutations. Website: www.allelebiotech.com Buffers Call: 1-800-991-RNAi/858-587-6645 (Pacific Time: 9:00AM~5:00PM) Purified rabbit polyclonal antibody supplied in PBS with 0.09% (W/V) Email: [email protected] sodium azide. This antibody is purified through a protein G column and eluted out with both high and low pH buffers and neutralized immediately after elution then followed by dialysis against PBS.
    [Show full text]
  • A Novel Breast Cancer ^ Associated BRIP1 (FANCJ/BACH1) Germ- Line Mutation Impairs Protein Stability and Function
    Cancer Prevention and Susceptibility A Novel Breast Cancer ^ Associated BRIP1 (FANCJ/BACH1)Germ- line Mutation Impairs Protein Stability and Function Arcangela De Nicolo,1MariellaTancredi,4 Grazia Lombardi,4 Cristina Chantal Flemma,4 Serena Barbuti,4 Claudio Di Cristofano,4 Bijan Sobhian,1Generoso Bevilacqua,4 Ronny Drapkin,2,3 andMariaAdelaideCaligo4 Abstract Purpose: BRCA1-interacting protein 1 (BRIP1; FANCJ/BACH1), which encodes a DNA helicase that interacts with BRCA1, has been suggested to be a low-penetrance breast cancer predispos- ing gene.We aimed to assess whether BRIP1 mutations contribute to breast cancer susceptibility in our population and, if so, to investigate the effect of such mutation(s) on BRIP1function. Experimental Design: A series of49 breast/ovarian cancer families, devoid ofa BRCA1/ BRCA2 mutation, were screened for BRIP1 mutations. Functional analyses, including coimmuno- precipitation and stability assays, were employed to further characterize a previously unreported variant. Results: Five sequence alterations were identified, of which four had been already described. Herein, we report a novel BRIP1 germ-line mutation identified in a woman with early-onset breast cancer. The mutation consists ofa 4-nucleotide deletion (c.2992-2995delAAGA) in BRIP1 exon 20 that causes a shift in the reading frame, disrupts the BRCA1-binding domain of BRIP1, and creates a premature stop codon. Functional analysis ofthe recombinant mutant protein in transfected cells showed that the truncation interferes with the stability of the protein and with its ability to interact with BRCA1. Loss ofthe wild-type BRIP1 allele with retention ofthe mutated one was observed in the patient’s breast tumor tissue. Conclusions: These results, by showing that the newly identified BRIP1 c.2992-2995delAAGA mutation is associated with instability and functional impairment of the encoded protein, provide further evidence of a breast cancer ^ related role for BRIP1.
    [Show full text]
  • Open Full Page
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders.
    [Show full text]
  • FANCJ Regulates the Stability of FANCD2/FANCI Proteins and Protects Them from Proteasome and Caspase-3 Dependent Degradation
    FANCJ regulates the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation Komaraiah Palle, Ph.D. (Kumar) Assistant Professor of Oncologic Sciences Abraham Mitchell Cancer Research Scholar Mitchell Cancer Institute University of South Alabama Outline • Fanconi anemia (FA) pathway • Role of FA pathway in Genome maintenance • FANCJ and FANCD2 functional relationship • FANCJ-mediated DDR in response to Fork-stalling Fanconi Anemia • Rare, inherited blood disorder. • 1:130,000 births Guido Fanconi 1892-1979 • Affects men and women equally. • Affects all racial and ethnic groups – higher incidence in Ashkenazi Jews and Afrikaners Birth Defects Fanconi anemia pathway • FA is a rare chromosome instability syndrome • Autosomal recessive disorder (or X-linked) • Developmental abnormalities • 17 complementation groups identified to date • FA pathway is involved in DNA repair • Increased cancer susceptibility - many patients develop AML - in adults solid tumors Fanconi Anemia is an aplastic anemia FA patients are prone to multiple types of solid tumors • Increased incidence and earlier onset cancers: oral cavity, GI and genital and reproductive tract head and neck breast esophagus skin liver brain Why? FA is a DNA repair disorder • FA caused by mutations in 17 genes: FANCA FANCF FANCM FANCB FANCG/XRCC9 FANCN/PALB2 FANCC FANCI RAD51C/FANCO FANCD1/BRCA2 FANCJ SLX4/FANCP FANCD2 FANCL ERCC2/XPF/FANCQ FANCE BRCA1/FANCS • FA genes function in DNA repair processes • FA patient cells are highly sensitive
    [Show full text]
  • DNA Damage Response and Cancer Therapeutics Through the Lens of the Fanconi Anemia DNA Repair Pathway Sonali Bhattacharjee* and Saikat Nandi*
    Bhattacharjee and Nandi Cell Communication and Signaling (2017) 15:41 DOI 10.1186/s12964-017-0195-9 REVIEW Open Access DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway Sonali Bhattacharjee* and Saikat Nandi* Abstract Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics. Keywords: DNA repair, Fanconi Anemia (FA) signaling network, DNA damage response, Cancer therapeutics, Synthetic lethality, Combination Therapy Genomic instability, Interstrand crosslink (ICL), Homologous recombination, Translesion synthesis Background Additional clinical features included microcephaly, vitiligo Fanconi Anemia (FA), a rare genetic cancer-susceptibility and hypoplasia of the testes [8]. After nearly four decades syndrome is a recessive autosomal or X-linked genetic dis- another article reported an accumulation of large number ease [1–3].
    [Show full text]
  • HEREDITARY CANCER PANELS Part I
    Pathology and Laboratory Medicine Clinic Building, K6, Core Lab, E-655 2799 W. Grand Blvd. HEREDITARY CANCER PANELS Detroit, MI 48202 855.916.4DNA (4362) Part I- REQUISITION Required Patient Information Ordering Physician Information Name: _________________________________________________ Gender: M F Name: _____________________________________________________________ MRN: _________________________ DOB: _______MM / _______DD / _______YYYY Address: ___________________________________________________________ ICD10 Code(s): _________________/_________________/_________________ City: _______________________________ State: ________ Zip: __________ ICD-10 Codes are required for billing. When ordering tests for which reimbursement will be sought, order only those tests that are medically necessary for the diagnosis and treatment of the patient. Phone: _________________________ Fax: ___________________________ Billing & Collection Information NPI: _____________________________________ Patient Demographic/Billing/Insurance Form is required to be submitted with this form. Most genetic testing requires insurance prior authorization. Due to high insurance deductibles and member policy benefits, patients may elect to self-pay. Call for more information (855.916.4362) Bill Client or Institution Client Name: ______________________________________________________ Client Code/Number: _____________ Bill Insurance Prior authorization or reference number: __________________________________________ Patient Self-Pay Call for pricing and payment options Toll
    [Show full text]
  • Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients
    cancers Article Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients Jesús del Valle 1,2,3 , Paula Rofes 1,2,3 , José Marcos Moreno-Cabrera 1,2,3 , Adriana López-Dóriga 4,5, Sami Belhadj 1,2,3 , Gardenia Vargas-Parra 1,2,3, Àlex Teulé 1,2,6, Raquel Cuesta 1,2,3, Xavier Muñoz 1,2,3, Olga Campos 1,2,3,Mónica Salinas 1,2, Rafael de Cid 7, Joan Brunet 1,2,3, Sara González 1,2,3, Gabriel Capellá 1,2,3 , Marta Pineda 1,2,3 , Lídia Feliubadaló 1,2,3 and Conxi Lázaro 1,2,3,* 1 Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, 08908 Hospitalet de Llobregat, Spain; [email protected] (J.d.V.); [email protected] (P.R.); [email protected] (J.M.M.-C.); [email protected] (S.B.); [email protected] (G.V.-P.); [email protected] (À.T.); [email protected] (R.C.); [email protected] (X.M.); [email protected] (O.C.); [email protected] (M.S.); [email protected] (J.B.); [email protected] (S.G.); [email protected] (G.C.); [email protected] (M.P.); [email protected] (L.F.) 2 Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Spain 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain 4 Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, 08908 Hospitalet de Llobregat, Spain; [email protected] 5 Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain 6 Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain 7 Genomes for Life—GCAT lab Group, Institut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-93-2607145 Received: 7 February 2020; Accepted: 25 March 2020; Published: 30 March 2020 Abstract: Fanconi anemia (FA) is caused by biallelic mutations in FA genes.
    [Show full text]
  • Epigenetic Regulation of DNA Repair Genes and Implications for Tumor Therapy ⁎ ⁎ Markus Christmann , Bernd Kaina
    Mutation Research-Reviews in Mutation Research xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Mutation Research-Reviews in Mutation Research journal homepage: www.elsevier.com/locate/mutrev Review Epigenetic regulation of DNA repair genes and implications for tumor therapy ⁎ ⁎ Markus Christmann , Bernd Kaina Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany ARTICLE INFO ABSTRACT Keywords: DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and DNA repair cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment Genotoxic stress with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly Epigenetic silencing governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to tumor formation mutations in their coding or promoter region, changes in the expression of transcription factors activating or Cancer therapy repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation MGMT Promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. GADD45 We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyl- TET transferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of p53 components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)- methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy.
    [Show full text]
  • The FOXM1/BRIP1 Axis in Replicative Stress Induced DNA Damage Response in Neuroblastoma
    Ghent University, Faculty of Medicine and Health Sciences The FOXM1/BRIP1 axis in replicative stress induced DNA damage response in neuroblastoma: functional exploration and zebrafish modeling This thesis is submitted as fulfillment of the requirements for the degree of Doctor in Health Sciences by Suzanne Vanhauwaert, 2017 Promoter: Prof. dr. Frank Speleman Co-promoter: Prof. dr. Katleen De Preter I II Thesis submitted to fulfill the requirements for the degree of Doctor of Health Sciences Promoter Prof. dr. Frank Speleman Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Co-promoter Prof. dr. Katleen De Preter Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Members of the examination committee Shizhen Zhu MD, PhD Mayo Clinic, 200 First St. SW Rochester, MN 55905 Rochester, Minnesota, USA Anna Sablina, PhD VIB-KU Leuven Center for Cancer Biology O&N 4, Leuven, Belgium Kathleen Claes, PhD Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Tom Van Maerken, MD, PhD Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Steven Goossens, PhD Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Joni Van der Meulen, PhD Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium Statement of confidentiality: The information in this document is confidential to the person to whom it is addressed and should not be disclosed to any other person. It may not be reproduced in whole, or in part, nor may any of the information contained therein be disclosed without the prior consent of the author. The research described here was conducted at the Center for Medical Genetics (Ghent University, Ghent, Belgium) and Dana Farber Cancer Institute (Harvard Medical School, Boston, USA) and funded by grants from the Research Foundation Flanders (FWO), the Flemish League against Cancer (VLK) and Villa Joep.
    [Show full text]
  • Beyond BRCA1 and BRCA2: Deleterious Variants in DNA Repair Pathway Genes in Italian Families with Breast/Ovarian and Pancreatic Cancers
    Journal of Clinical Medicine Article Beyond BRCA1 and BRCA2: Deleterious Variants in DNA Repair Pathway Genes in Italian Families with Breast/Ovarian and Pancreatic Cancers 1,2, 1,2, 3,4 2 2 Aldo Germani y, Simona Petrucci y, Laura De Marchis , Fabio Libi , Camilla Savio , Claudio Amanti 2,5, Adriana Bonifacino 2,5, Barbara Campanella 6, Carlo Capalbo 2,7 , Augusto Lombardi 2,5 , Stefano Maggi 2,5, Mauro Mattei 2, Mattia Falchetto Osti 2,6 , Patrizia Pellegrini 1,2, Annarita Speranza 2, Gianluca Stanzani 2, Valeria Vitale 2 , Antonio Pizzuti 8,9, Maria Rosaria Torrisi 1,2 and Maria Piane 1,2,* 1 Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, 00100 Rome, Italy; [email protected] (A.G.); [email protected] (S.P.); [email protected] (P.P.); [email protected] (M.R.T.) 2 Sant’Andrea University Hospital, 00100 Rome, Italy; [email protected] (F.L.); [email protected] (C.S.); [email protected] (C.A.); [email protected] (A.B.); [email protected] (C.C.); [email protected] (A.L.); [email protected] (S.M.); [email protected] (M.M.); [email protected] (M.F.O.); [email protected] (A.S.); [email protected] (G.S.); [email protected] (V.V.) 3 Department of Radiological Anatomopathological, Oncological Science, “Sapienza” University of Rome, 00100 Rome, Italy; [email protected] 4 Umberto I University Hospital, 00100 Rome, Italy 5 Department
    [Show full text]
  • Vistaseq GYN Cancer Panel
    VistaSeq® GYN Cancer Panel Specimen ID: Control ID: Acct#: Phone: TESTING Patient Details Specimen Details Physycian Details DOB: Date collected: Ordering: Age (yyy/mm/dd): Date received: Referring: Gender: Date entered: ID: Patient ID: Date reported: NPI: POSITIVE At least one clinically significant variant was detected. RESULTS AND INTERPRETATION NOTE VARIANT GENE CLASSIFICATION ZYGOSITY AMINO ACID CHANGE CANCER RISK DETECTED + BRIP1 LIKELY Het c.2765T>G p.Leu922X HIGH PATHOGENIC Variant Summary: A heterozygous c.2765T>G (p.Leu922X) likely pathogenic variant was detected in exon 19 of BRIP1. This nonsense variant is predicted to result in a premature termination codon and has been previously reported in ClinVar, in general population databases, and in the literature in an individual with breast cancer as well as in a high-risk unaffected control (Couch 2015, Ramus 2015). A recent publication by Easton (2016) suggests some truncating BRIP1 variants may not be associated with a substantial increase in breast cancer risk, however they suggest there is clinical utility for predicting ovarian cancer risk. Therefore, this variant has been classified as likely to be associated with an increased risk for breast and/or ovarian cancer. (NM_032043; hg19 chr17:g.59763337) BRIP1 (BRCA1-interacting protein 1 ; OMIM 605882) encodes a DNA helicase that functions as a tumor suppressor via its interaction with BRCA1. BRIP1 is essential for normal DNA repair and genomic stability. Heterozygous germline mutations in BRIP1 have been identified and associated with familial breast and ovarian cancers. Biallelic germline BRIP mutations may cause Fanconi anemia. Clinical Significance: High Cancer Risk This mutation is clinically significant and is associated with an increased cancer risk.
    [Show full text]
  • Bloom Syndrome Complex Promotes FANCM Recruitment to Stalled Replication Forks and Facilitates Both Repair and Traverse of DNA Interstrand Crosslinks
    OPEN Citation: Cell Discovery (2016) 2, 16047; doi:10.1038/celldisc.2016.47 ARTICLE www.nature.com/celldisc Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks Chen Ling1, Jing Huang2,4, Zhijiang Yan1, Yongjiang Li1, Mioko Ohzeki3, Masamichi Ishiai3, Dongyi Xu1,5, Minoru Takata3, Michael Seidman2, Weidong Wang1 1Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA; 2Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA; 3Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA trans- locase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2–FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM.
    [Show full text]