A Computational Theory of Meaning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Measures of Entropy and Information
On Measures of Entropy and Information Tech. Note 009 v0.7 http://threeplusone.com/info Gavin E. Crooks 2018-09-22 Contents 5 Csiszar´ f-divergences 12 Csiszar´ f-divergence ................ 12 0 Notes on notation and nomenclature 2 Dual f-divergence .................. 12 Symmetric f-divergences .............. 12 1 Entropy 3 K-divergence ..................... 12 Entropy ........................ 3 Fidelity ........................ 12 Joint entropy ..................... 3 Marginal entropy .................. 3 Hellinger discrimination .............. 12 Conditional entropy ................. 3 Pearson divergence ................. 14 Neyman divergence ................. 14 2 Mutual information 3 LeCam discrimination ............... 14 Mutual information ................. 3 Skewed K-divergence ................ 14 Multivariate mutual information ......... 4 Alpha-Jensen-Shannon-entropy .......... 14 Interaction information ............... 5 Conditional mutual information ......... 5 6 Chernoff divergence 14 Binding information ................ 6 Chernoff divergence ................. 14 Residual entropy .................. 6 Chernoff coefficient ................. 14 Total correlation ................... 6 Renyi´ divergence .................. 15 Lautum information ................ 6 Alpha-divergence .................. 15 Uncertainty coefficient ............... 7 Cressie-Read divergence .............. 15 Tsallis divergence .................. 15 3 Relative entropy 7 Sharma-Mittal divergence ............. 15 Relative entropy ................... 7 Cross entropy -
Essential Computational Thinking
Essential Computational Thinking Computer Science from Scratch Ricky J. Sethi COGNELLA Contact [email protected], 800.200.3908, for more information c COGNELLA DO NOT DUPLICATE, DISTRIBUTE, OR POST Essential Computational Thinking Computer Science from Scratch Ricky J. Sethi COGNELLA Contact [email protected], 800.200.3908, for more information c COGNELLA DO NOT DUPLICATE, DISTRIBUTE, OR POST Bassim Hamadeh, CEO and Publisher Natalie Piccotti, Director of Marketing Kassie Graves, Vice President of Editorial Jamie Giganti, Director of Academic Publishing John Remington, Acquisitions Editor Michelle Piehl, Project Editor Casey Hands, Associate Production Editor Jess Estrella, Senior Graphic Designer Stephanie Kohl, Licensing Associate Copyright c 2019 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cognella Licensing Department at [email protected]. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Copyright c 2015 iStockphoto LP/CHBD Printed in the United StatesCOGNELLA of America. ISBN: 978-1-5165-1810-4 (pbk) / 978-1-5165-1811-1 (br) Contact [email protected], 800.200.3908, for more information c COGNELLA DO NOT DUPLICATE, DISTRIBUTE, OR POST For Rohan, Megan, Surrinder, Harindar, and especially the team of the two Harindars. -
The Case for Shifting the Renyi Entropy
Article The case for shifting the Renyi Entropy Francisco J. Valverde-Albacete1,‡ ID , Carmen Peláez-Moreno2,‡* ID 1 Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés 28911, Spain; [email protected] 2 Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés 28911, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-624-8771 † These authors contributed equally to this work. Academic Editor: name Received: date; Accepted: date; Published: date Abstract: We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications. Keywords: shifted Rényi entropy; Shannon-type relations; generalized weighted means; Hölder means; escort distributions. 1. Introduction Let X ∼ PX be a random variable over a set of outcomes X = fxi j 1 ≤ i ≤ ng and pmf PX defined in terms of the non-null values pi = PX(xi) . The Rényi entropy for X is defined in terms of that of PX as Ha(X) = Ha(PX) by a case analysis [1] 1 n a 6= 1 H (P ) = log pa (1) a X − ∑ i 1 a i=1 a = 1 lim Ha(PX) = H(PX) a!1 n where H(PX) = − ∑i=1 pi log pi is the Shannon entropy [2–4]. -
SYSTEMS, INFORMATION and DECISION THEORY Information Theory
WWW.VIDYARTHIPLUS.COM IT2052 MANAGEMENT INFORMATION SYSTEM UNIT-3 SYSTEM, INFORMATION AND DECISION THEORY www.vidyarthiplus.com SYSTEMS, INFORMATION AND DECISION THEORY Information Theory ’bits’ of information in messages (Shannon & Weaver model of communication) Information theory deals with measurement and transmission of information through a channel. A fundamental work in this area is the Shannon's Information Theory, which provides many useful tools that are based on measuring information in terms of bits or - more generally - in terms of (the minimal amount of) the complexity of structures needed to encode a given piece of information. Noise can be considered data without meaning; that is, data that is not being used to transmit a signal, but is simply produced as an unwanted by-product of other activities. Noise is still considered information, in the sense of Information Theory. Shannon’s ideas • Form the basis for the field of Information Theory • Provide the yardsticks for measuring the efficiency of communication system. • Identified problems that had to be solved to get to what he described as ideal communications systems Information: In defining information, Shannon identified the critical relationships among the elements of a communication system the power at the source of a signal the bandwidth or frequency range of an information channel through which the signal travels the noise of the channel, such as unpredictable static on a radio, which will alter the signal by the time it reaches the last element of the System the receiver, which must decode the signal. To get a high-level understanding of his theory, a few basic points should be made. -
Entropy and Certainty in Lossless Data Compression
The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 12-2009 Entropy and Certainty in Lossless Data Compression James Jay Jacobs University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Data Storage Systems Commons Recommended Citation Jacobs, James Jay, "Entropy and Certainty in Lossless Data Compression" (2009). Dissertations. 1082. https://aquila.usm.edu/dissertations/1082 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION by James Jay Jacobs A Dissertation Submitted to the Graduate School of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: December 2009 COPYRIGHT BY JAMES JAY JACOBS 2009 The University of Southern Mississippi ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION by James Jay Jacobs Abstract of a Dissertation Submitted to the Graduate School of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2009 ABSTRACT ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION by James Jay Jacobs December 2009 Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. -
The Case for Shifting the Rényi Entropy
entropy Article The Case for Shifting the Rényi Entropy Francisco J. Valverde-Albacete † and Carmen Peláez-Moreno *,† Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-624-8771 † These authors contributed equally to this work. Received: 15 November 2018; Accepted: 7 January 2019; Published: 9 January 2019 Abstract: We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications. Keywords: shifted Rényi entropy; Shannon-type relations; generalized weighted means; Hölder means; escort distributions 1. Introduction The suggestive framework for the description and assessment of information transmission that Shannon proposed and co-developed [1–3] soon took hold of the mind of a generation of scientists and overflowed its initial field of application, despite the cautions of the inceptor himself [4]. He had independently motivated and re-discovered the Boltzmann description for the thermodynamic entropy of a system with many micro-states [5]. His build-up of the concept starting from Hartley’s measure of information using the nowadays well-known axiomatic approach created a sub-science—perhaps a science—out of three papers. -
What Is Shannon Information?
What is Shannon information? Olimpia Lombardi 1 – Federico Holik 2 – Leonardo Vanni 3 1 CONICET – Universidad de Buenos Aires 2 CONICET – Universidad Nacional de la Plata 3 Universidad de Buenos Aires 1.- Introduction Although the use of the word ‘information’, with different meanings, can be traced back to antique and medieval texts (see Adriaans 2013), it is only in the 20 th century that the term begins to acquire the present-day sense. Nevertheless, the pervasiveness of the notion of information both in our everyday life and in our scientific practice does not imply the agreement about the content of the concept. As Luciano Floridi (2010, 2011) stresses, it is a polysemantic concept associated with different phenomena, such as communication, knowledge, reference, meaning, truth, etc. In the second half of the 20 th century, philosophy begins to direct its attention to this omnipresent but intricate concept in an effort of unravel the tangle of significances surrounding it. According to a deeply rooted intuition, information is related with data, it has or carries content. In order to elucidate this idea, the philosophy of information has coined the concept of semantic information (Bar-Hillel and Carnap 1953, Bar-Hillel 1964, Floridi 2013), strongly related with notions such as reference, meaning and representation: semantic information has intentionality −“aboutness” −, it is directed to other things. On the other hand, in the field of science certain problems are expressed in terms of a notion of information amenable to quantification.