A Binary Operation on a Set S Is an Operation That Takes Two Elements of S As Input and Produces One Element of S As Output
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics I Basic Mathematics
Mathematics I Basic Mathematics Prepared by Prof. Jairus. Khalagai African Virtual university Université Virtuelle Africaine Universidade Virtual Africana African Virtual University NOTICE This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ License (abbreviated “cc-by”), Version 2.5. African Virtual University Table of ConTenTs I. Mathematics 1, Basic Mathematics _____________________________ 3 II. Prerequisite Course or Knowledge _____________________________ 3 III. Time ____________________________________________________ 3 IV. Materials _________________________________________________ 3 V. Module Rationale __________________________________________ 4 VI. Content __________________________________________________ 5 6.1 Overview ____________________________________________ 5 6.2 Outline _____________________________________________ 6 VII. General Objective(s) ________________________________________ 8 VIII. Specific Learning Objectives __________________________________ 8 IX. Teaching and Learning Activities ______________________________ 10 X. Key Concepts (Glossary) ____________________________________ 16 XI. Compulsory Readings ______________________________________ 18 XII. Compulsory Resources _____________________________________ 19 XIII. Useful Links _____________________________________________ 20 XIV. Learning Activities _________________________________________ 23 XV. Synthesis Of The Module ___________________________________ -
Algebra I (Math 200)
Algebra I (Math 200) UCSC, Fall 2009 Robert Boltje Contents 1 Semigroups and Monoids 1 2 Groups 4 3 Normal Subgroups and Factor Groups 11 4 Normal and Subnormal Series 17 5 Group Actions 22 6 Symmetric and Alternating Groups 29 7 Direct and Semidirect Products 33 8 Free Groups and Presentations 35 9 Rings, Basic Definitions and Properties 40 10 Homomorphisms, Ideals and Factor Rings 45 11 Divisibility in Integral Domains 55 12 Unique Factorization Domains (UFD), Principal Ideal Do- mains (PID) and Euclidean Domains 60 13 Localization 65 14 Polynomial Rings 69 Chapter I: Groups 1 Semigroups and Monoids 1.1 Definition Let S be a set. (a) A binary operation on S is a map b : S × S ! S. Usually, b(x; y) is abbreviated by xy, x · y, x ∗ y, x • y, x ◦ y, x + y, etc. (b) Let (x; y) 7! x ∗ y be a binary operation on S. (i) ∗ is called associative, if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x; y; z 2 S. (ii) ∗ is called commutative, if x ∗ y = y ∗ x for all x; y 2 S. (iii) An element e 2 S is called a left (resp. right) identity, if e ∗ x = x (resp. x ∗ e = x) for all x 2 S. It is called an identity element if it is a left and right identity. (c) S together with a binary operation ∗ is called a semigroup, if ∗ is as- sociative. A semigroup (S; ∗) is called a monoid if it has an identity element. 1.2 Examples (a) Addition (resp. -
Semiring Frameworks and Algorithms for Shortest-Distance Problems
Journal of Automata, Languages and Combinatorics u (v) w, x–y c Otto-von-Guericke-Universit¨at Magdeburg Semiring Frameworks and Algorithms for Shortest-Distance Problems Mehryar Mohri AT&T Labs – Research 180 Park Avenue, Rm E135 Florham Park, NJ 07932 e-mail: [email protected] ABSTRACT We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently clas- sical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity. Keywords: semirings, finite automata, shortest-paths algorithms, rational power series Classical shortest-paths problems in a weighted directed graph arise in various contexts. The problems divide into two related categories: single-source shortest- paths problems and all-pairs shortest-paths problems. The single-source shortest-path problem in a directed graph consists of determining the shortest path from a fixed source vertex s to all other vertices. The all-pairs shortest-distance problem is that of finding the shortest paths between all pairs of vertices of a graph. -
Boolean and Abstract Algebra Winter 2019
Queen's University School of Computing CISC 203: Discrete Mathematics for Computing II Lecture 7: Boolean and Abstract Algebra Winter 2019 1 Boolean Algebras Recall from your study of set theory in CISC 102 that a set is a collection of items that are related in some way by a common property or rule. There are a number of operations that can be applied to sets, like [, \, and C. Combining these operations in a certain way allows us to develop a number of identities or laws relating to sets, and this is known as the algebra of sets. In a classical logic course, the first thing you typically learn about is propositional calculus, which is the branch of logic that studies propositions and connectives between propositions. For instance, \all men are mortal" and \Socrates is a man" are propositions, and using propositional calculus, we may conclude that \Socrates is mortal". In a sense, propositional calculus is very closely related to set theory, in that propo- sitional calculus is the study of the set of propositions together with connective operations on propositions. Moreover, we can use combinations of connective operations to develop the laws of propositional calculus as well as a collection of rules of inference, which gives us even more power to manipulate propositions. Before we continue, it is worth noting that the operations mentioned previously|and indeed, most of the operations we have been using throughout these notes|have a special name. Operations like [ and \ apply to pairs of sets in the same way that + and × apply to pairs of numbers. -
On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES . -
7.2 Binary Operators Closure
last edited April 19, 2016 7.2 Binary Operators A precise discussion of symmetry benefits from the development of what math- ematicians call a group, which is a special kind of set we have not yet explicitly considered. However, before we define a group and explore its properties, we reconsider several familiar sets and some of their most basic features. Over the last several sections, we have considered many di↵erent kinds of sets. We have considered sets of integers (natural numbers, even numbers, odd numbers), sets of rational numbers, sets of vertices, edges, colors, polyhedra and many others. In many of these examples – though certainly not in all of them – we are familiar with rules that tell us how to combine two elements to form another element. For example, if we are dealing with the natural numbers, we might considered the rules of addition, or the rules of multiplication, both of which tell us how to take two elements of N and combine them to give us a (possibly distinct) third element. This motivates the following definition. Definition 26. Given a set S,abinary operator ? is a rule that takes two elements a, b S and manipulates them to give us a third, not necessarily distinct, element2 a?b. Although the term binary operator might be new to us, we are already familiar with many examples. As hinted to earlier, the rule for adding two numbers to give us a third number is a binary operator on the set of integers, or on the set of rational numbers, or on the set of real numbers. -
Axioms and Algebraic Systems*
Axioms and algebraic systems* Leong Yu Kiang Department of Mathematics National University of Singapore In this talk, we introduce the important concept of a group, mention some equivalent sets of axioms for groups, and point out the relationship between the individual axioms. We also mention briefly the definitions of a ring and a field. Definition 1. A binary operation on a non-empty set S is a rule which associates to each ordered pair (a, b) of elements of S a unique element, denoted by a* b, in S. The binary relation itself is often denoted by *· It may also be considered as a mapping from S x S to S, i.e., * : S X S ~ S, where (a, b) ~a* b, a, bE S. Example 1. Ordinary addition and multiplication of real numbers are binary operations on the set IR of real numbers. We write a+ b, a· b respectively. Ordinary division -;- is a binary relation on the set IR* of non-zero real numbers. We write a -;- b. Definition 2. A binary relation * on S is associative if for every a, b, c in s, (a* b) * c =a* (b *c). Example 2. The binary operations + and · on IR (Example 1) are as sociative. The binary relation -;- on IR* (Example 1) is not associative smce 1 3 1 ~ 2) ~ 3 _J_ - 1 ~ (2 ~ 3). ( • • = -6 I 2 = • • * Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat- ical Society for school teachers on 5 September 1988. 11 Definition 3. A semi-group is a non-€mpty set S together with an asso ciative binary operation *, and is denoted by (S, *). -
A List of Arithmetical Structures Complete with Respect to the First
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
On the Representation of Boolean Magmas and Boolean Semilattices
Chapter 1 On the representation of Boolean magmas and Boolean semilattices P. Jipsen, M. E. Kurd-Misto and J. Wimberley Abstract A magma is an algebra with a binary operation ·, and a Boolean magma is a Boolean algebra with an additional binary operation · that distributes over all finite Boolean joins. We prove that all square-increasing (x ≤ x2) Boolean magmas are embedded in complex algebras of idempotent (x = x2) magmas. This solves a problem in a recent paper [3] by C. Bergman. Similar results are shown to hold for commutative Boolean magmas with an identity element and a unary inverse operation, or with any combination of these properties. A Boolean semilattice is a Boolean magma where · is associative, com- mutative, and square-increasing. Let SL be the class of semilattices and let S(SL+) be all subalgebras of complex algebras of semilattices. All members of S(SL+) are Boolean semilattices and we investigate the question of which Boolean semilattices are representable, i.e., members of S(SL+). There are 79 eight-element integral Boolean semilattices that satisfy a list of currently known axioms of S(SL+). We show that 72 of them are indeed members of S(SL+), leaving the remaining 7 as open problems. 1.1 Introduction The study of complex algebras of relational structures is a central part of algebraic logic and has a long history. In the classical setting, complex al- gebras connect Kripke semantics for polymodal logics to Boolean algebras with normal operators. Several varieties of Boolean algebras with operators are generated by the complex algebras of a standard class of relational struc- tures. -
Binary Opera- Tions, Magmas, Monoids, Groups, Rings, fields and Their Homomorphisms
1. Introduction In this chapter, I introduce some of the fundamental objects of algbera: binary opera- tions, magmas, monoids, groups, rings, fields and their homomorphisms. 2. Binary Operations Definition 2.1. Let M be a set. A binary operation on M is a function · : M × M ! M often written (x; y) 7! x · y. A pair (M; ·) consisting of a set M and a binary operation · on M is called a magma. Example 2.2. Let M = Z and let + : Z × Z ! Z be the function (x; y) 7! x + y. Then, + is a binary operation and, consequently, (Z; +) is a magma. Example 2.3. Let n be an integer and set Z≥n := fx 2 Z j x ≥ ng. Now suppose n ≥ 0. Then, for x; y 2 Z≥n, x + y 2 Z≥n. Consequently, Z≥n with the operation (x; y) 7! x + y is a magma. In particular, Z+ is a magma under addition. Example 2.4. Let S = f0; 1g. There are 16 = 42 possible binary operations m : S ×S ! S . Therefore, there are 16 possible magmas of the form (S; m). Example 2.5. Let n be a non-negative integer and let · : Z≥n × Z≥n ! Z≥n be the operation (x; y) 7! xy. Then Z≥n is a magma. Similarly, the pair (Z; ·) is a magma (where · : Z×Z ! Z is given by (x; y) 7! xy). Example 2.6. Let M2(R) denote the set of 2 × 2 matrices with real entries. If ! ! a a b b A = 11 12 , and B = 11 12 a21 a22 b21 b22 are two matrices, define ! a b + a b a b + a b A ◦ B = 11 11 12 21 11 12 12 22 : a21b11 + a22b21 a21b12 + a22b22 Then (M2(R); ◦) is a magma. -
A Guide to Self-Distributive Quasigroups, Or Latin Quandles
A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information.