PM 7/13 (2) Trogoderma Granarium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species). -
Trogoderma Variabile (Warehouse Beetle)
Warehouse Beetle DIAGNOSTIC MORPHOLOGY Trogoderma variabile (Ballion) Adults: • About 1/8 inch (3.2mm) in length ranging from 1/16 inch to ¼ inch. • Oval in overall shape • Base color is black or brownish-black • Three reddish-brown, golden, or gray irregular lines across the body GENERAL INFORMATION • The elytra (wing covers) have mottled patterns of brown and yellow on a dark background The Warehouse Beetle (T. variabile) is found • Elytra will have numerous hairs throughout the Northern Hemisphere and is being closely monitored in Australia. Of the many Immature Stage: Trogoderma species, it is the most commonly found in dried grains and other stored foods but is • Approximately ¼ inch (6.3 mm) in length also found in homes and museums. In the museum • Yellow-white to dark, reddish- brown, many setae (hairs) setting T. variabile is a special threat to plant and insect collections. The Warehouse Beetle tends to be very active and can develop at a rapid rate. Larvae may be spotted as a result of their coloring and light avoidance found in dead animals, cereals, candy, cocoa, and may be unresponsive to toxic fumigants and movement and may be found in a food source or in cookies, fish meal, flour, dead insects, milk anoxic treatments. This makes them particularly cracks and crevices in the storage area. powder, nut meats, pet foods, potato chips, resistant to many common pest control noodles, spaghetti, pollen, and dried spices. procedures. Because Trogoderma occur naturally Unlike many Trogoderma spp, the adult outdoors and are able to fly, total elimination of Warehouse Beetle can fly. -
Bad Bugs: Warehouse Beetle
Insects Limited, Inc. Pat Kelley, BCE Bad Bugs: Warehouse Beetle complaining customer. That is the nature of the Warehouse beetle. Let’s take a close look at this common stored product insect: The Warehouse beetle prefers feeding on animal protein. This could be anything from road kill to dog food to powdered cheese and milk. The beetle will feed on plant material but a dead insect or mouse would be its preferred food source. You will often find Warehouse beetles (Trogoderma spp.) feeding on dead insects. It is important to empty these lights on a regular basis. The larva (see figure) of the Warehouse beetle is approximately 1/4-inch-long Larval color varies from yellowish/white to dark brown as the larvae mature. Warehouse beetle larvae have two different tones of hairs on the posterior end. These guard hairs protect them against attack from the rear. The Warehouse beetle has about 1,706 hastisetae hairs If there is an insect that is truly a voracious feeder and about 2,196 spicisetae hairs according to a and a potential health hazard to humans and publication by George Okumura. Since a larva sheds young animals, the Warehouse beetle falls into that its hairs during each molt, the damage of this pest category because of the long list of foods that it insect comes from the 1000’s of these pointed hairs attacks. Next to the dreaded quarantine pest, that escape and enter a finished food product as an the Khapra beetle, it is the most serious stored insect fragment. These insect fragments then can be product insect pest with respect to health. -
Em2631 1966.Pdf (203.3Kb)
I COLLEGE OF AGRICULTURE COOPERATIVE EXTENSION SERVICE WASHINGTON STATE UNIVERSITY PULLMAN, WASHINGTON 99163 May, 1966 E. Mo 2631 ENEMIES OF THE ALFALFA LEAFCUTTING BEE AND THEIR (X)NTROL by Carl Johansen and Jack Eves Associate Entomologist and Experimental Aide Department of Entomology One of the major pollinators of alfalfa grown for seed in the state of Washington, the alfalfa leafcutting bee (Megachile rotundata), has been increasingly killed by insect parasites and nest destroyers during the past 3 years. Seventeen of these pests have been identified to date. The most numerous parasite is the small wasp, Monodontomerus obscurus . It is shiny blue-green and only 1/8 to 1/6 inch long. A carpet beetle, Trogoderma glabrum, is currently the most abundant nest destroyer. It is oval, dull black with three faint lines of white bristles across the wing covers, and 1/10 to 1/7 inch long. Control Control of the parasites and nest destroyers of the alfalfa leafcutting bee is largely a matter of good management practices. Since all parasite adults complete emergence at least t wo days before the ma le leafcutters begin to emerge, they can be readily destroyed in an incubation room. Pests such as Trogoderma remain active in the bee nests , feeding and reproducing through out the year. A more complex system of sanitary measures is required to keep them below damaging population levels. Helpful practices are classified as: (1) cleanup, (2) cold storage , ( 3) nest renovation, and (4) use of poison baits. Cleanup -- To trap the parasites emerging in your leafcutting bee incubation room, simply place a pan of water beneath a light bul b. -
DD 10: Discussion Document
DD 10: Discussion Document - North American approach to prevent entry, establishment and spread of khapra beetle (Trogoderma granarium Everts, 1899; Coleoptera: Dermestidae) in the NAPPO region Prepared by the members of the North American Plant Protection Organization (NAPPO) Expert Group on khapra beetle, comprised of subject matter experts from the National Plant Protection Organization of each member country as well as industry, in consultation with additional experts from the NAPPO member countries. The NAPPO Executive Committee, the Advisory and Management Committee and the Secretariat gratefully acknowledge and thank the following subject matter experts who contributed to the development of this document: Wendy Asbil, Jason Murphy (CFIA); Scott Myers, Stephen Bullington, Richard Johnson (APHIS PPQ); Héctor Enrique Vega, Nallely Acevedo Reyes, Neftali Reyes Carranza (SENASICA); Gary Martin, Arvid Hawk, Jim Frahm (US industry). Contents Project Objective ........................................................................................................................................ 3 1.0 Introduction ........................................................................................................................................... 3 Pest Biology ............................................................................................................................................ 3 2.0 Regulatory Framework ...................................................................................................................... -
Pest Profile
Pest Profile Photo credit By Simon Hinkley & Ken Walker, Museum Victoria [CC BY 3.0 au (http://creativecommons.org/licenses/by/3.0/au/deed.en)], via Wikimedia Commons Common Name: Cabinet Beetle, Warehouse Beetle Scientific Name: Trogoderma inclusum Order and Family: Coleoptera: Dermestidae Size and Appearance: Adult cabinet beetles are about 3.5 mm long and can vary in color but are generally darker brown. Hairs cover the body surface, giving the beetles a mottled look. The head is not visible from dorsal view, and has compacted antennae. Larvae are about 8 mm in length and can vary from yellow to dark brown depending on instar. Length (mm) Appearance Egg 0.1 mm in length 5-129 white, round eggs are laid randomly on material female is currently feeding on. Larva/Nymph 1-8 mm in length depending on Dark brown, segmented in appearance, instar small brownish hair covering body. 8-12 molts. Adult 8 mm long Dark brown with hairs covering body. Mottled appearance. Compacted antennae, head not visible from dorsal view. Pupa (if applicable) 7-10 mm long Pupates in last larval skin within infested material. Type of feeder (Chewing, sucking, etc.): Chewing Host food product/s: Trogoderma inclusum feeds on a variety of animal products including furs, hides, leather, and museum specimens. They will also feed on clothing, stored food, and plant materials. Description of Damage (larvae and adults): Cabinet beetles’ feeding results in damage on the outer surface of hides and loosened hairs on furs. With museum specimens, frass and molts beneath the specimen is an indicator of their presence. -
Descriptions, Biology, and Notes on the Identification of Some Trogoderma Larvae
Utah State University DigitalCommons@USU Ba Bee Lab 1-1-1960 Descriptions, Biology, and Notes on the Identification of Some Trogoderma Larvae R. S. Beal Jr. Arizona State University Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_ba Part of the Entomology Commons Recommended Citation Beal, R. S. Jr., "Descriptions, Biology, and Notes on the Identification of Some rT ogoderma Larvae" (1960). Ba. Paper 3. https://digitalcommons.usu.edu/bee_lab_ba/3 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Ba by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. I Descriptions, Biology, and Note ·s on the Identification of Some TROGODERMA LARVAE (Coleoptera, Dermestidae) Technical Bulletin No. 1228 AGRICULTURALRESEARCH SERVICE UNITEDST ATES DEPARTMENT OF AGRICULTURE CONTENTS Page Key to larvae of Nearctic species of Trogoderma _________________ ______ 3 Descriptions and discussions of larvae of Trogode1ma spec ies ______ __ ____ 4 Trogoderma granarium Everts ____________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Trogoderma glabrum (Herbst) ____ ______ _____________________ ____ 6 Trogoderma irroratu m Reitter _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 7 Trogoderma teukton BeaL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 9 Trogoderma inclusum Le Conte ___________________________________ 11 Trogoderma parabile BeaL _ _ _ _ -
Diagnostic Protocols for Regulated Pests
DIAGNOSTIC PROTOCOLS FOR REGULATED PESTS Trogoderma granarium Introduction The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) is a stored product pest of great importance. Its importance lies not only in the capabilities of causing serious damage to stored dry commodities but also that countries having established populations are facing export restrictions. The Khapra beetle is thought to have originated from the Indian subcontinent but has become established in a number of Asian, Middle Eastern, African, and some European countries. It is one of the very few stored product pests that has limited worldwide distribution. T. granarium has very limited ability to spread without human aid as it is unable to fly. It is very important to distinguish between those records which relate to introductions and those of established infestations. The Khapra beetle is established within an area broadly limited north by central Asia, south by the Equator, west by the Sahel of West Africa and east by Myanmar; i.e. the warm dry regions along the Suez route from the Indian subcontinent to Europe. This area includes the southeastern part of the EPPO region. Khapra beetle has been introduced into areas of similar climatic conditions elsewhere particularly the alternative route between India and Europe around Africa. Currently its status in southern Africa is unclear and it may be absent there now. Initially introductions caused severe damage but outbreaks have been local and in most cases have been eradicated. In general, Khapra beetle is only successful in competition with other major stored product pests in conditions of low humidity. It has also established in some areas of unfavourable climate, where it survives only in protected and/or heated environments such as maltings and feedmills, for example in Europe, Korea and Japan. -
Semiochemicals and Entomopathogenic Microbials
Semiochemicals and Entomopathogenic Microbials Subjects: Entomology Submitted by: Anamika Sharma Definition Biological control agents and semiochemicals have become essential parts of the integrated pest management of insect pests over the last several years, as the incorporation of semiochemicals with natural enemies and entomopathogenic microbials has been gaining significance. Semiochemicals can enable the successful dispersal of entomopathogenic microbials. Using semiochemicals to disseminate microbial pathogens is still at the initial stage. For dispersal of entomopathogenic fungus semiochemicals have been successfully used in field conditions, however same can not be said about the other microbials such as specially for bacterial and viral entomopathogens. 1. Fungi Pathogens may be dispersed naturally by parasitoids, predators, and the feces of insects, birds, and mammals, and surface contamination [[1]]. However, for entomopathogenic fungi, natural dispersal, in additional to the aerial movement of spores, is also known to occur through the movement of the targeted insect pests and pollinators, as shown in honey bees in canola production, where honey bees disperse B. bassiana, increasing the mortality of Lygus sp. (Hahn) (Hemiptera: Miridae) [[2],[3]]. A selective and assisted dissemination technique called auto-dissemination is also extremely helpful in spreading entomopathogens [[1]]. Auto-dissemination can be used to target both adults and larvae of some insect pests [[4],[5],[6]]. Semiochemicals are being used to increase the -
(Coleoptera) of the Arabian Peninsula. Part 3 - Description of Attagenus Kadeji Species Nova from Yemen
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 51 (31/12/2012): 129‒131. CONTRIBUTION TO THE KNOWLEDGE OF THE DERMESTIDAE (COLEOPTERA) OF THE ARABIAN PENINSULA. PART 3 - DESCRIPTION OF ATTAGENUS KADEJI SPECIES NOVA FROM YEMEN Jiří Háva Department of Forest Protection and GM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, CZ-165 21, Prague 6 - Suchdol, Czech Republic ‒ [email protected] Abstract: A new species, Attagenus kadeji sp. n., from Yemen, is described, illustrated and compared with similar species. The new species belongs to the subfamily Attageninae, tribe Attagenini, and differs from all known species by the coloration and setation of its dorsal surfaces and the structure of the antennae and male genitalia. Key words: Coleoptera, Dermestidae, Attagenus, taxonomy, new species, Yemen. Aportación al conocimiento de los Dermestidae (Coleoptera) de la Península Arábiga. Parte 3 - Descripción de Attage- nus kadeji sp. n. de Yemen Resumen: Se describe la nueva especie Attagenus kadeji sp. n., procedente de Yemen, se ilustra y se compara con especies similares. La especie nueva pertenece a la subfamilia Attageninae, tribu Attagenini, y se diferencia de todas las especies co- nocidas por la coloración y setación de sus superficies dorsales y la estructura de las antenas y los órganos genitales masculi- nos. Palabras clave: Coleoptera, Dermestidae, Attagenus, taxonomía, especie nueva, Yemen. Taxonomy/Taxonomía: Attagenus kadeji sp. n. Introduction At present the Dermestidae contains 1420 species and subs- AHEC, 4 JHAC, 1 MK). Type specimens were labelled with pecies worldwide; 51 of them known from Arabian peninsula red, printed labels bearing the text as follows: “HOLOTYPE (Háva, 2003, 2007a,b, 2009, 2010, 2011, 2012; Zhantiev, [or PARATYPE, respectively] Attagenus kadeji sp. -
EPPO Bulletin E-Mail to Hq@Eppo
Entomology and Applied Science Letters Volume 5, Issue 2, Page No: 7-9 Copyright CC BY-NC-ND 4.0 Available Online at: www.easletters.com ISSN No: 2349-2864 Sensational Find Species Trogoderma Variabile (Dermestidae) in the Fruit of Astragalus: Astragalus Demetrii in The Republic of the Karachay- Cherkessia (Russia) Pushkin Sergey Victorovich*, Belous Victor Nikolaevich North Caucasus Federal University, Institute of Living Systems, Department of General Biology and Biodiversity, Russia ABSTRACT This study examines Astragalus in the natural habitats of southern Russia (Republic Karachay-Cherkessia) for the first time. In the fruits of Astragalus, a species of Trogoderma is found - this is the first evidence of the possibility of harming leguminous crops in a natural habitat. There are no reliable literary sources about this, although the carpet beetles have been thoroughly studied. Keywords: Astragalus demetrii, Trogoderma variabile, Dermestidae, Karachay-Cherkessia Republics, carpet beetles HOW TO CITE THIS ARTICLE: Pushkin Sergey Victorovich, Belous Victor Nikolaevich, Sensational Find Species Trogoderma Varia- bile (Dermestidae) in the Fruit of Astragalus: Astragalus Demetrii in The Republic of the Kara-chay-Cherkessia (Russia), Entomol Appl Sci Lett, 2018, 5 (2): 7-9. Corresponding author: Pushkin Sergey Victorovich The body of the beetle has a length of up to 4 E-mail sergey-pushkin-st @ yandex.ru mm: the overall habitus of the imago (Fig. 1). At Received: 10/12/2017 Accepted: 02/04/2018 the end of the belly of the larva, there are char- acteristic bundles of red hair - a hat. It is a pest INTRODUCTION of grain, wheat, corn, rye and various products of crushed grain. -
Bibliography
Bibliography - A - Abeille de Perrin E. 1870: Megatoma rufovittata sp. nov. Annales de la Société Entomologique de France 10: 46. Abeille de Perrin E. 1872: Études sur les Coléoptères cavernicoles, suivies de la description de Coléoptères nouveaux propres au midi de la France. Annales de la Société Entomologique de France 1872: 41-44. Abdel-Kawy F. K. 1998: Effect of gamma-irradition on some biological activities of the larval stage of the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal Egyptian German Society Zoology 27: 141-151. Abdel-Kawy F. K. 1999: Effect of gamma-irradiation on some biological activities of the larval stage of the khapra beetle, Trogoderma granarium Everts (Col., Dermestidae). Journal of Applied Entomology 123: 201-204. Abdel-Kedar M. M. & Barak A. V. 1979: Evidence for a sex pheromone in the hide beetle, Dermestes maculatus (DeGeer) (Coleoptera: Dermestidae). Journal of Chemical Ecology 5: 805-813. Abdel-Rahman H. A., Zenab A. Soliman & Ali M. F. 1981a: Biological study on the black carpet beetle Attagenus scalaris Pic (Coleoptera: Dermestidae). Bulletin of the Society of Egypte 63: 231-241. Abdel-Rahman H. A., Zenab A. Soliman & Ali M. F. 1981b: Ecological studies on the black carpet beetle Attagenus scalaris Pic (Coleoptera: Dermestidae). Bulletin of the Society of Egypte 63: 243-252. Abivardi C. 2001: Iranian Entomology, An Introduction. Volume 2: Applied Entomology. Schriftenreihe der Stiftung Franz Xaver Schnyder von Wartensee, Zentralbibliothek Zürich 59: 445-1033. Ádám L. 1986: The species of Elateroidea, Dryopoidea, Byrrhoidea, Dermestoidea and Bostrychoidea of the Kiskunság (Coleoptera). In.: Mahunka S. (ed.): The Fauna of Kishunság National Park I.