Linear Electric Machine-Based Gravity Energy Storage for Wind Farm Integration

Total Page:16

File Type:pdf, Size:1020Kb

Linear Electric Machine-Based Gravity Energy Storage for Wind Farm Integration Linear Electric Machine-Based Gravity Energy Storage for Wind Farm Integration Christoff D. Botha and Maarten J. Kamper Department of Electrical and Electronic Engineering Stellenbosch University Stellenbosch, South Africa [email protected], [email protected] Abstract—In this paper an above-ground, dry gravity energy support, long-term bulk storage and other grid support services storage system to help integrate wind energy sources into the such as upgrade deferral [5]. energy mix, is described and developed. Using the principle of There are numerous energy storage technologies, making gravitational potential energy and a single piston example, multi- piston shafts and multi-shaft systems are proposed. From this it useful to divide them into different categories. These tech- analysis, some of the basic characteristics of the system, such nologies can be classified either by the service they provide as round trip efficiency and energy density, is derived. Using a or the method by which the energy is stored, i.e. the form in generic wind farm and available literature, the paper discusses which the energy is stored. The from of energy storage can how the system can be constructed and used to help integrate be divided as either mechanical, chemical, electrochemical, wind farms with an electrical grid, while also demonstrating the comparatively small surface area that the storage system electrical or thermal energy storage, while the type of service requires. they provide can be divided into three overarching categories, Index Terms—Energy storage, wind farms, renewable energy i.e. bulk storage, distributed storage and power quality services sources, gravitational potential energy, linear electric machines [8]. Storage systems can be further evaluated by comparing their technical characteristics, with some of the important I. INTRODUCTION characteristics being the system’s energy and power rating, Renewable energy has grown tremendously since the start of round-trip efficiency and cost, usually determined using a cost the century, supplying 26 % of global electricity production metric such as levelised cost of storage (LCOS). in 2018 [1]. A total of 1246 GW of renewable energy (not The most commonly used utility-scale storage system is including pumped hydroelectricity) was installed by the end pumped hydroelectric energy storage (PHES), with batteries of 2018, with wind power contributing 591 GW thereof [1]. and flywheel storage systems being popular choices for storage Similarly, wind power represents 52 % of the renewable power systems installed alongside wind farms [3], [4], [9], [10]. Some supply of South Africa [2]. other technologies include hydrogen storage, supercapacitors, With wind power set to increase its share of power gener- superconducting magnetic energy storage, gravitational poten- ation responsibilities further, integrating the additional wind tial energy storage methods and compressed air schemes. power capacity presents many challenges due to the inherent The focus of this paper is on a specific gravitational po- variability of wind. This not only introduces uncertainty in the tential energy storage system, developing the energy storage availability of wind, but also short term fluctuations [3]. concept proposed in [8] further. The paper is divided up This uncertainty and variability results in power quality into the following sections: Section II describes some of problems, with ancillary services needed to provide frequency the existing and proposed gravity energy storage methods, response, power smoothing and peak shaving, among others with Section III further explaining and describing the specific [4]. The need to ensure adequate grid flexibility and reliability storage method being considered in this paper. Section IV with the growing participation of wind power has renewed the discusses how energy storage technologies are used to help search for technologies that can assist with grid integration, integrate wind farms into the grid, with Section V detailing such as new forecasting tools, demand-side control and energy a design for the LEM-GES. Lastly, some conclusions and storage [5]. recommendations are given in Section VI. Energy storage specifically has received renewed attention II. GRAVITY ENERGY STORAGE TECHNOLOGIES because of its wide range of applications [6], [7], from improving power quality, providing voltage and frequency The use of gravitational potential energy as a method of energy storage is an old concept. PHES, which is currently The research presented in this paper is financially sponsored by the Centre the most used and mature energy storage method [11], is a for Renewable and Sustainable Energy Studies (CRSES) in Stellenbosch, form of gravitational energy storage. A number of variations South Africa. on traditional PHES concepts have been proposed since its inception in the 1890s, including the use of old mineshafts 978-1-7281-4162-6/20/$31.00 ©2020 IEEE for underground PHES (UPHES) and various piston-based pumped storage technologies [12]–[14]. PHES provides ob- vious advantages, e.g. scalability, commercial viability and E = mgh; (1) high round trip efficiencies [15], but it also has some distinct disadvantages. Gravitational pull is relatively weak and the with E being the potential energy in Joule, m the mass of density of water is low, thus PHES requires either a large the object in kilogram, h the height of the system in meters head or large volume of water with which to store a significant and g the gravitational constant (9.81 m=s2). With 1 kWh amount of energy. Site selection criteria is also very strict, as being equal to 3.6 x 106 Joule, it is clear from (1) that a large a potential site has to have sufficient water supply, the correct mass or height is needed to be able to store even a few MWh topography, economic feasibility and social acceptability [15]. of power, as can be seen by Gravitricity’s proposed storage It is only recently that waterless forms of gravity energy system being only a few MWh despite a piston mass of 3000 storage have also gained some traction, as can be seen by the tonne and a height difference of 1500 m. This highlights two proposed systems from ARES LLC [16] and Gravitricity [17]. problems when designing any type of gravity energy storage Advanced rail energy storage (ARES) uses rail road shuttles system, namely how to achieve a sufficiently large object mass to move large blocks of concrete, typically between 45–64 t and system height so that enough energy can be stored for the each, uphill to charge the system and let the concrete blocks intended energy storage application. descend under gravity when discharging the system [16]. ARES has a round-trip efficiency of 80 %, a proposed lifetime A. Piston Description of 40 years and no standby storage losses. ARES currently has their first commercial project underway in Nevada, a 50 MW, LEM technologies directly convert electrical energy to linear 12.5 MWh system. The aim is to build systems with a power movement and vice versa, without the need for intermediary rating ranging from 100 to 3000 MW and energy ratings up systems such as gearboxes or wire ropes. LEMs are commonly to 6 GWh. used in wave energy converter systems, magnetically levitated Gravitricity proposes vertically raising and lowering a large (MAGLEV) trains and ropeless elevator systems [19]–[21]. mass down an abandoned mineshaft [17]. The system uses a The LEM-GES system utilises the ropeless operation en- piston (the large mass being hoisted) with a mass up to 3000 abled by the use of LEM technology, by foregoing the use of tonne over a distance of 1500 m, hoisted with a specialised a single, large piston in favour of multiple, smaller pistons. system that is similar to those found in existing deep shaft Each piston takes the form of a rectangular prism, with the mines. This system has a claimed round-trip efficiency be- LEM attached to the four sides of the prism, as shown in Fig. tween 80 - 90 % and a system lifetime of 50 years, with a 1, with lp being the piston length and wp being the piston rated power of up to 40 MW and an energy rating of a few width. MWh. Gravitricity has received funding to build a 250 kWh LEMs can be obtained by ’cutting and rolling out’ the prototype [18]. corresponding rotary machine and can be classified according The authors of [8] also use the idea of moving a piston to topologies or the shape of the LEM, i.e. flat or tubular. vertically to store energy, however without the use of the [8], [19]. Similar to a rotary machine, it has one side with more conventional mining hoist system. Instead, the piston armature windings, which is referred to as the primary. The forms part of a linear electric machine (LEM), which is used other side is called the secondary, or translator, and relates to to move the piston. This enables the system to operate without the rotor of a rotary machine. LEMs can have any combination the need for wire ropes, allowing for the use of multi-piston of permanent magnets and windings on the primary, secondary system, improving the storage system in numerous ways, not or both. least of which is an increase in storage capacity. The authors For an application such as the LEM-GES, where the also proposed that the LEM-based gravity energy storage secondary needs to cover the system height, it would be (LEM-GES) system could be constructed in two different prohibitively expensive to have any active material (copper ways. One method would be to place the system in an old or permanent magnets) placed on it. Thus, any suitable LEM mineshaft, thereby ensuring that the system has a large height topology for the LEM-GES would require a passive secondary, difference and can store a significant amount of energy.
Recommended publications
  • Energy Literacy Essential Principles and Fundamental Concepts for Energy Education
    Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages About This Guide Energy Literacy: Essential Principles and Intended use of this document as a guide includes, Fundamental Concepts for Energy Education but is not limited to, formal and informal energy presents energy concepts that, if understood and education, standards development, curriculum applied, will help individuals and communities design, assessment development, make informed energy decisions. and educator trainings. Energy is an inherently interdisciplinary topic. Development of this guide began at a workshop Concepts fundamental to understanding energy sponsored by the Department of Energy (DOE) arise in nearly all, if not all, academic disciplines. and the American Association for the Advancement This guide is intended to be used across of Science (AAAS) in the fall of 2010. Multiple disciplines. Both an integrated and systems-based federal agencies, non-governmental organizations, approach to understanding energy are strongly and numerous individuals contributed to the encouraged. development through an extensive review and comment process. Discussion and information Energy Literacy: Essential Principles and gathered at AAAS, WestEd, and DOE-sponsored Fundamental Concepts for Energy Education Energy Literacy workshops in the spring of 2011 identifies seven Essential Principles and a set of contributed substantially to the refinement of Fundamental Concepts to support each principle. the guide. This guide does not seek to identify all areas of energy understanding, but rather to focus on those To download this guide and related documents, that are essential for all citizens. The Fundamental visit www.globalchange.gov. Concepts have been drawn, in part, from existing education standards and benchmarks.
    [Show full text]
  • STARS in HYDROSTATIC EQUILIBRIUM Gravitational Energy
    STARS IN HYDROSTATIC EQUILIBRIUM Gravitational energy and hydrostatic equilibrium We shall consider stars in a hydrostatic equilibrium, but not necessarily in a thermal equilibrium. Let us define some terms: U = kinetic, or in general internal energy density [ erg cm −3], (eql.1a) U u ≡ erg g −1 , (eql.1b) ρ R M 2 Eth ≡ U4πr dr = u dMr = thermal energy of a star, [erg], (eql.1c) Z Z 0 0 M GM dM Ω= − r r = gravitational energy of a star, [erg], (eql.1d) Z r 0 Etot = Eth +Ω = total energy of a star , [erg] . (eql.1e) We shall use the equation of hydrostatic equilibrium dP GM = − r ρ, (eql.2) dr r and the relation between the mass and radius dM r =4πr2ρ, (eql.3) dr to find a relations between thermal and gravitational energy of a star. As we shall be changing variables many times we shall adopt a convention of using ”c” as a symbol of a stellar center and the lower limit of an integral, and ”s” as a symbol of a stellar surface and the upper limit of an integral. We shall be transforming an integral formula (eql.1d) so, as to relate it to (eql.1c) : s s s GM dM GM GM ρ Ω= − r r = − r 4πr2ρdr = − r 4πr3dr = (eql.4) Z r Z r Z r2 c c c s s s dP s 4πr3dr = 4πr3dP =4πr3P − 12πr2P dr = Z dr Z c Z c c c s −3 P 4πr2dr =Ω. Z c Our final result: gravitational energy of a star in a hydrostatic equilibrium is equal to three times the integral of pressure within the star over its entire volume.
    [Show full text]
  • Energy Conservation in a Spring
    Part II: Energy Conservation in a Spring Activity 4 Title: Forces and Energy in a Spring Summary: Students will use the “Masses and Springs” simulation from PhET to investigate the relationship between gravitational potential energy, spring potential energy, and mass. Standard: PS2 (Ext) - 5 Students demonstrate an understanding of energy by… 5aa Identifying, measuring, calculating and analyzing qualitative and quantitative relationships associated with energy transfer or energy transformation. Specific Learning Goals: 1. Understand how to calculate the force constant of a spring using the formula F = -k ∆x 2. Understand that even though energy is transformed during the oscillation of a spring among gravitational potential energy, elastic potential energy, and kinetic energy, the total energy in the system remains constant. 3. Understand how to calculate the gravitational potential energy for a mass which is lifted to a height above a table. 4. Understand how to calculate the elastic potential energy for a spring which has been displaced by a certain distance. Prior Knowledge: 1. The restoring force that a spring exerts on a mass is proportional to the displacement of the spring and the spring constant and is in a direction opposite the displacement: F = -k ∆x 2. Gravitational potential energy is calculated by the formula: PEg = mgΔh 2 3. Elastic potential energy is calculated by the formula: PEs = ½ k ∆x 4. In a mass and spring system at equilibrium, the restoring force is equal to the gravitational force on the suspended mass (Fg = mg) Schedule: 40-50 minutes Materials: “Masses and Springs 2.02 PhET” Engage: Three different masses are suspended from a spring.
    [Show full text]
  • Potential Energy
    Potential Energy • So far: Considered all forces equal, calculate work done by net force only => Change in kinetic energy. – Analogy: Pure Cash Economy • But: Some forces seem to be able to “store” the work for you (when they do negative work) and “give back” the same amount (when they do positive work). – Analogy: Bank Account. You pay money in (ending up with less cash) - the money is stored for you - you can withdraw it again (get cash back) • These forces are called “conservative” (they conserve your work/money for you) Potential Energy - Example • Car moving up ramp: Weight does negative work ΔW(grav) = -mgΔh • Depends only on initial and final position • Can be retrieved as positive work on the way back down • Two ways to describe it: 1) No net work done on car on way up F Pull 2) Pulling force does positive F Normal y work that is stored as gravitational x potential energy ΔU = -ΔW(grav) α F Weight Total Mechanical Energy • Dimension: Same as Work Unit: Nm = J (Joule) Symbol: E = K.E. + U 1) Specify all external *) forces acting on a system 2) Multiply displacement in the direction of the net external force with that force: ΔWext = F Δs cosφ 3) Set equal to change in total energy: m 2 m 2 ΔE = /2vf - /2vi + ΔU = ΔWext ΔU = -Wint *) We consider all non-conservative forces as external, plus all forces that we don’t want to include in the system. Example: Gravitational Potential Energy *) • I. Motion in vertical (y-) direction only: "U = #Wgrav = mg"y • External force: Lift mass m from height y i to height y f (without increasing velocity) => Work gets stored as gravitational potential energy ΔU = mg (yf -yi)= mg Δy ! • Free fall (no external force): Total energy conserved, change in kinetic energy compensated by change in m 2 potential energy ΔK.E.
    [Show full text]
  • How Long Would the Sun Shine? Fuel = Gravitational Energy? Fuel
    How long would the Sun shine? Fuel = Gravitational Energy? • The mass of the Sun is M = 2 x 1030 kg. • The Sun needs fuel to shine. – The amount of the fuel should be related to the amount of – The Sun shines by consuming the fuel -- it generates energy mass. from the fuel. • Gravity can generate energy. • The lifetime of the Sun is determined by – A falling body acquires velocity from gravity. – How fast the Sun consumes the fuel, and – Gravitational energy = (3/5)GM2/R – How much fuel the Sun contains. – The radius of the Sun: R = 700 million m • How fast does the Sun consume the fuel? – Gravitational energy of the Sun = 2.3 x 1041 Joules. – Energy radiated per second is called the “luminosity”, which • How long could the Sun shine on gravitational energy? is in units of watts. – Lifetime = (Amount of Fuel)/(How Fast the Fuel is – The solar luminosity is about 3.8 x 1026 Watts. Consumed) 41 26 • Watts = Joules per second – Lifetime = (2.3 x 10 Joules)/(3.8 x 10 Joules per second) = 0.6 x 1015 seconds. • Compare it with a light bulb! – Therefore, the Sun lasts for 20 million years (Helmholtz in • What is the fuel?? 1854; Kelvin in 1887), if gravity is the fuel. Fuel = Nuclear Energy Burning Hydrogen: p-p chain • Einstein’s Energy Formula: E=Mc2 1 1 2 + – The mass itself can be the source of energy. • H + H -> H + e + !e 2 1 3 • If the Sun could convert all of its mass into energy by • H + H -> He + " E=Mc2… • 3He + 3He -> 4He + 1H + 1H – Mass energy = 1.8 x 1047 Joules.
    [Show full text]
  • Gravitational Potential Energy
    An easy way for numerical calculations • How long does it take for the Sun to go around the galaxy? • The Sun is travelling at v=220 km/s in a mostly circular orbit, of radius r=8 kpc REVISION Use another system of Units: u Assume G=1 Somak Raychaudhury u Unit of distance = 1kpc www.sr.bham.ac.uk/~somak/Y3FEG/ u Unit of velocity= 1 km/s u Then Unit of time becomes 109 yr •Course resources 5 • Website u And Unit of Mass becomes 2.3 × 10 M¤ • Books: nd • Sparke and Gallagher, 2 Edition So the time taken is 2πr/v = 2π × 8 /220 time units • Carroll and Ostlie, 2nd Edition Gravitational potential energy 1 Measuring the mass of a galaxy cluster The Virial theorem 2 T + V = 0 Virial theorem Newton’s shell theorems 2 Potential-density pairs Potential-density pairs Effective potential Bertrand’s theorem 3 Spiral arms To establish the existence of SMBHs are caused by density waves • Stellar kinematics in the core of the galaxy that sweep • Optical spectra: the width of the spectral line from around the broad emission lines Galaxy. • X-ray spectra: The iron Kα line is seen is clearly seen in some AGN spectra • The bolometric luminosities of the central regions of The Winding some galaxies is much larger than the Eddington Paradox (dilemma) luminosity is that if galaxies • Variability in X-rays: Causality demands that the rotated like this, the spiral structure scale of variability corresponds to an upper limit to would be quickly the light-travel time erased.
    [Show full text]
  • Gravitational Potential and Energy of Homogeneous Rectangular
    View metadata, citationGravitational and similar papers potential at core.ac.uk and energy of homogeneous rectangular parallelepipedbrought to you by CORE provided by CERN Document Server Zakir F. Seidov, P.I. Skvirsky Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel Gravitational potential and gravitational energy are presented in analytical form for homogeneous right parallelepiped. PACS numbers: 01.55.+b, 45.20.Dd, 96.35.Fs Keywords: Newtonian mechanics; mass, size, gravitational fields I. INTRODUCTION: BASIC FORMULAE As it is well known, Newtonian gravitational potential, of homogeneous body with constant density ρ,atpoint (X,Y,Z) is defined as triple integral over the body's volume: ZZZ U(X; Y; Z)=Gρ u(X; Y; Z; x; y; z) dxdydz (1) with −1=2 u(X; Y; Z; x; y; z)=[(x − X)2 +(y − Y )2 +(z − Z)2] ;(2) here G stands for Newtonian constant of gravitation. In spite of almost 400-year-long attempts since Isaac Newton' times, the integral (1) is known in closed form (not in the series!) in quite a few cases [1]: a) a piece of straight line, b) a sphere, c) an ellipsoid; note that both cases a) and b) may be considered as particular cases of c). As to serial solution, the integral (1) is expressed in terms of the various kinds of series for external points outside the minimal sphere containing the whole body (non-necessary homogeneous), as well as for inner points close to the origin of co-ordinates. However in this note we do not touch the problem of serial solution and are only interested in exact analytical solution of (1).
    [Show full text]
  • Mechanical Energy
    Chapter 2 Mechanical Energy Mechanics is the branch of physics that deals with the motion of objects and the forces that affect that motion. Mechanical energy is similarly any form of energy that’s directly associated with motion or with a force. Kinetic energy is one form of mechanical energy. In this course we’ll also deal with two other types of mechanical energy: gravitational energy,associated with the force of gravity,and elastic energy, associated with the force exerted by a spring or some other object that is stretched or compressed. In this chapter I’ll introduce the formulas for all three types of mechanical energy,starting with gravitational energy. Gravitational Energy An object’s gravitational energy depends on how high it is,and also on its weight. Specifically,the gravitational energy is the product of weight times height: Gravitational energy = (weight) × (height). (2.1) For example,if you lift a brick two feet off the ground,you’ve given it twice as much gravitational energy as if you lift it only one foot,because of the greater height. On the other hand,a brick has more gravitational energy than a marble lifted to the same height,because of the brick’s greater weight. Weight,in the scientific sense of the word,is a measure of the force that gravity exerts on an object,pulling it downward. Equivalently,the weight of an object is the amount of force that you must exert to hold the object up,balancing the downward force of gravity. Weight is not the same thing as mass,which is a measure of the amount of “stuff” in an object.
    [Show full text]
  • How Stars Work: • Basic Principles of Stellar Structure • Energy Production • the H-R Diagram
    Ay 122 - Fall 2004 - Lecture 7 How Stars Work: • Basic Principles of Stellar Structure • Energy Production • The H-R Diagram (Many slides today c/o P. Armitage) The Basic Principles: • Hydrostatic equilibrium: thermal pressure vs. gravity – Basics of stellar structure • Energy conservation: dEprod / dt = L – Possible energy sources and characteristic timescales – Thermonuclear reactions • Energy transfer: from core to surface – Radiative or convective – The role of opacity The H-R Diagram: a basic framework for stellar physics and evolution – The Main Sequence and other branches – Scaling laws for stars Hydrostatic Equilibrium: Stars as Self-Regulating Systems • Energy is generated in the star's hot core, then carried outward to the cooler surface. • Inside a star, the inward force of gravity is balanced by the outward force of pressure. • The star is stabilized (i.e., nuclear reactions are kept under control) by a pressure-temperature thermostat. Self-Regulation in Stars Suppose the fusion rate increases slightly. Then, • Temperature increases. (2) Pressure increases. (3) Core expands. (4) Density and temperature decrease. (5) Fusion rate decreases. So there's a feedback mechanism which prevents the fusion rate from skyrocketing upward. We can reverse this argument as well … Now suppose that there was no source of energy in stars (e.g., no nuclear reactions) Core Collapse in a Self-Gravitating System • Suppose that there was no energy generation in the core. The pressure would still be high, so the core would be hotter than the envelope. • Energy would escape (via radiation, convection…) and so the core would shrink a bit under the gravity • That would make it even hotter, and then even more energy would escape; and so on, in a feedback loop Ë Core collapse! Unless an energy source is present to compensate for the escaping energy.
    [Show full text]
  • Electricity Generation Using Gravity Light and Voltage Controller
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 Electricity Generation using Gravity Light and voltage Controller Aditi Ingale1, Bhagyashree Pachore2, Prajakta Patil3, S.S. Sankpal4 1,2,3B.E. Student, Department of Electronics & Telecommunication Engineering, P.V.P.I.T., Budhgaon, Maharashtra, India 4Assistant Professor at P.V.P.I.T., Budhgaon, Maharashtra, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - Now a days population is increased by day by day so electric plant would be much smaller than hydro-electric it is very necessary to generate electrical energy. For that plants. The location of that plant would not be restricted to purpose the power generation from Gravity light is a suitable water elevations and gravitational electric power revolutionary new approach to storing energy and creating plants and their produced energy would be much expensive. illumination. Here we generate power from gravity and simultaneously store the energy in the battery. In this we use 2. OBJECTIVE Arduino based voltage controller circuit. When the voltage level is less than threshold level then battery will charge and 1. An eco-friendly solution for domestic & street light. when voltage level is equal to threshold level then battery stop 2. Usage of stored muscular energy. charging. This stored energy we use multiple lamps or other applications. 3. Generating significant amount of power for domestic application. Key Words: Innovative, Gravitational Energy, DC Gear Motor, Electrical Energy 4. Practically tested results and mathematically evaluated results are to be compared. 1. INTRODUCTION 5. Concept of electricity generation using gravitational With a growing world population 20% of the world's potential energy.
    [Show full text]
  • Direct Conversion of Energy. INSTITUTION Atomic Energy Commission, Washington,D
    DOCUMENT RESUME ED 107 521 SE 019 210 AUTHOR Corliss, William R. TITLE Direct Conversion of Energy. INSTITUTION Atomic Energy Commission, Washington,D. C. Office of Information Services. PUB DATE 64 NOTE 41p. AVAILABLE FROM USAEC Technical Information Center,P.O. Box 62, Oak Ridge, TN 37830 (cost to the generalpublic for 1-4. copies, $0.25 ea., 5-99, $0.20ea., 100 or mare, $0.15 ea.) EDRS PRICE MF-$0.76 HC-$1.95 PLUS POSTAGE DESCRIPTORS Electricity; Electronics; *Energy; NuclearPhysics; Physics; *Scientific Research;*Thermodynamics IDENTIFIERS AEC; Atomic Energy Commission ABSTRACT This publication is one ofa series of information booklets for the general public publishedby the United States Atomic Energy Commission. Directenergy conversion Involves energy transformation Without moving parts.The concepts of direct and dynamic energy conversion plus thelaws governing energy conversion are investigated. Among the topics discussedare: Thermoelectricity; Thermionic Conversion; MagnetohydrodynamicConversion; Chemical Batteries; The Fuel Cell; Solar Cells;Nuclear Batteries; Ferroelectric Conversion and ThermomagneticConversion. Five problems related to the reading materialare included. Alist of suggested references concludes this report. Acomplete set of these booklets may be obtained by school and public librarieswithout charge. (BI). It®tr. A 1)+10+ u, OEPARTMENT OF HEALTH. EOUCATiON &WELFARE NATIONAL INSTiTUTL OF )1\ EOU CATION ontsocsE 00 OECXUANIC ET Zs.; AHSA et BC EE EIVNE DI PRROOM I) 1 ti L, E PERSON OR ORGANIZATION ORIGIN + APERSONC IT POINTS OF VIBEW OR OPINIONS STATE() 00 NOT NECESSARILYREPRE SENT OFFICIAL NATIONAL INSTITUTEOF EDUCATION POSITION OR POLICY ++ + + ++ I++. te t++ + t + tet+ + + +Jo+ ++®+ + -+tot++ +of+ IIet@tetzt\®tet ++ +t 1\®+ t@t®I\ +tot+Soto to+ ()tete+ f+tc)+0, @tiot@+ +®1\+ 1\ bY.
    [Show full text]
  • Storage Gravitational Energy for Small Scale Industrial and Residential Applications
    inventions Article Storage Gravitational Energy for Small Scale Industrial and Residential Applications Ana Cristina Ruoso 1, Nattan Roberto Caetano 1 and Luiz Alberto Oliveira Rocha 2,* 1 Department of Production Engineering, Technology Center, Federal University of Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, Brazil; [email protected] (A.C.R.); [email protected] (N.R.C.) 2 Department of Mechanical Engineering, Polytechnic School, University of Vale do Rio dos Sinos, Av. Unisinos 950, 93020-190 São Leopoldo, Brazil * Correspondence: [email protected] Received: 27 August 2019; Accepted: 17 October 2019; Published: 31 October 2019 Abstract: Photovoltaic cells produce electric energy in a short interval during a period of low demand and show high levels of intermittency. One of the well-known solutions is to store the energy and convert it into a more stable form, to transform again into electricity during periods of high demand, in which the energy has a higher value. This process provides economic viability for most energy-storage projects, even for the least efficient and most common, such as batteries. Therefore, this paper aims to propose a storage system that operates with gravitational potential energy, considering a small-scale use. The development of this methodology presents the mathematical modeling of the system and compares the main characteristics with other systems. The dimensions of the considered system are 12-m shaft, 5-m piston height, and 4 m of diameter; it presented an energy storage of 11 kWh. Also, it has an efficiency of about 90%, a lifetime of 50 years, and higher storage densities compared to other systems.
    [Show full text]