Nearly All New Protein-Coding Predictions in the CHESS Database Are Not Protein-Coding Irwin Jungreis*,✝,1,2, Michael L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole-Genome Landscape of Pancreatic Neuroendocrine Tumours
Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi:10.1038/nature21063) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/137698/ Deposited on: 12 December 2018 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Whole-genome landscape of pancreatic neuroendocrine tumours Aldo Scarpa1,2*§, David K. Chang3,4, 7,29,36* , Katia Nones5,6*, Vincenzo Corbo1,2*, Ann-Marie Patch5,6, Peter Bailey3,6, Rita T. Lawlor1,2, Amber L. Johns7, David K. Miller6, Andrea Mafficini1, Borislav Rusev1, Maria Scardoni2, Davide Antonello8, Stefano Barbi2, Katarzyna O. Sikora1, Sara Cingarlini9, Caterina Vicentini1, Skye McKay7, Michael C. J. Quinn5,6, Timothy J. C. Bruxner6, Angelika N. Christ6, Ivon Harliwong6, Senel Idrisoglu6, Suzanne McLean6, Craig Nourse3, 6, Ehsan Nourbakhsh6, Peter J. Wilson6, Matthew J. Anderson6, J. Lynn Fink6, Felicity Newell5,6, Nick Waddell6, Oliver Holmes5,6, Stephen H. Kazakoff5,6, Conrad Leonard5,6, Scott Wood5,6, Qinying Xu5,6, Shivashankar Hiriyur Nagaraj6, Eliana Amato1,2, Irene Dalai1,2, Samantha Bersani2, Ivana Cataldo1,2, Angelo P. Dei Tos10, Paola Capelli2, Maria Vittoria Davì11, Luca Landoni8, Anna Malpaga8, Marco Miotto8, Vicki L.J. Whitehall5,12,13, Barbara A. Leggett5,12,14, Janelle L. Harris5, Jonathan Harris15, Marc D. Jones3, Jeremy Humphris7, Lorraine A. Chantrill7, Venessa Chin7, Adnan M. Nagrial7, Marina Pajic7, Christopher J. Scarlett7,16, Andreia Pinho7, Ilse Rooman7†, Christopher Toon7, Jianmin Wu7,17, Mark Pinese7, Mark Cowley7, Andrew Barbour18, Amanda Mawson7†, Emily S. -
PDF Datasheet
Product Datasheet C9orf85 Overexpression Lysate NBL1-08604 Unit Size: 0.1 mg Store at -80C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBL1-08604 Updated 3/17/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBL1-08604 Page 1 of 2 v.20.1 Updated 3/17/2020 NBL1-08604 C9orf85 Overexpression Lysate Product Information Unit Size 0.1 mg Concentration The exact concentration of the protein of interest cannot be determined for overexpression lysates. Please contact technical support for more information. Storage Store at -80C. Avoid freeze-thaw cycles. Buffer RIPA buffer Target Molecular Weight 18.1 kDa Product Description Description Transient overexpression lysate of chromosome 9 open reading frame 85 (C9orf85) The lysate was created in HEK293T cells, using Plasmid ID RC208807 and based on accession number NM_182505. The protein contains a C- MYC/DDK Tag. Gene ID 138241 Gene Symbol C9ORF85 Species Human Notes HEK293T cells in 10-cm dishes were transiently transfected with a non-lipid polymer transfection reagent specially designed and manufactured for large volume DNA transfection. Transfected cells were cultured for 48hrs before collection. The cells were lysed in modified RIPA buffer (25mM Tris-HCl pH7.6, 150mM NaCl, 1% NP-40, 1mM EDTA, 1xProteinase inhibitor cocktail mix, 1mM PMSF and 1mM Na3VO4, and then centrifuged to clarify the lysate. Protein concentration was measured by BCA protein assay kit.This product is manufactured by and sold under license from OriGene Technologies and its use is limited solely for research purposes. -
Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Pediatric and Perinatal Pathology (1842-1868)
VOLUME 33 | SUPPLEMENT 2 | MARCH 2020 MODERN PATHOLOGY ABSTRACTS PEDIATRIC AND PERINATAL PATHOLOGY (1842-1868) LOS ANGELES CONVENTION CENTER FEBRUARY 29-MARCH 5, 2020 LOS ANGELES, CALIFORNIA 2020 ABSTRACTS | PLATFORM & POSTER PRESENTATIONS EDUCATION COMMITTEE Jason L. Hornick, Chair William C. Faquin Rhonda K. Yantiss, Chair, Abstract Review Board Yuri Fedoriw and Assignment Committee Karen Fritchie Laura W. Lamps, Chair, CME Subcommittee Lakshmi Priya Kunju Anna Marie Mulligan Steven D. Billings, Interactive Microscopy Subcommittee Rish K. Pai Raja R. Seethala, Short Course Coordinator David Papke, Pathologist-in-Training Ilan Weinreb, Subcommittee for Unique Live Course Offerings Vinita Parkash David B. Kaminsky (Ex-Officio) Carlos Parra-Herran Anil V. Parwani Zubair Baloch Rajiv M. Patel Daniel Brat Deepa T. Patil Ashley M. Cimino-Mathews Lynette M. Sholl James R. Cook Nicholas A. Zoumberos, Pathologist-in-Training Sarah Dry ABSTRACT REVIEW BOARD Benjamin Adam Billie Fyfe-Kirschner Michael Lee Natasha Rekhtman Narasimhan Agaram Giovanna Giannico Cheng-Han Lee Jordan Reynolds Rouba Ali-Fehmi Anthony Gill Madelyn Lew Michael Rivera Ghassan Allo Paula Ginter Zaibo Li Andres Roma Isabel Alvarado-Cabrero Tamara Giorgadze Faqian Li Avi Rosenberg Catalina Amador Purva Gopal Ying Li Esther Rossi Roberto Barrios Anuradha Gopalan Haiyan Liu Peter Sadow Rohit Bhargava Abha Goyal Xiuli Liu Steven Salvatore Jennifer Boland Rondell Graham Yen-Chun Liu Souzan Sanati Alain Borczuk Alejandro Gru Lesley Lomo Anjali Saqi Elena Brachtel Nilesh Gupta Tamara -
Transcriptional Control of Tissue-Resident Memory T Cell Generation
Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells. -
Comprehensive Identification of Genes Driven by ERV9-Ltrs Reveals TNFRSF10B As a Re-Activatable Mediator of Testicular Cancer Cell Death
Cell Death and Differentiation (2016) 23, 64–75 & 2016 Macmillan Publishers Limited All rights reserved 1350-9047/16 www.nature.com/cdd Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death U Beyer1,2,5, SK Krönung1,5, A Leha3, L Walter4 and M Dobbelstein*,1 The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3’RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. -
Expert Curation of the Human and Mouse Olfactory Receptor Gene Repertoires Identifies Conserved Coding Regions Split Across Two Exons
bioRxiv preprint doi: https://doi.org/10.1101/774612; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Expert Curation of the Human and Mouse Olfactory Receptor Gene Repertoires Identifies Conserved Coding Regions Split Across Two Exons 5 If H. A. Barnes1†#, Ximena Ibarra-Soria2,3†#, Stephen Fitzgerald3, Jose M. Gonzalez1, Claire Davidson1, Matthew P. Hardy1, Deepa Manthravadi4, Laura Van Gerven5, Mark Jorissen5, Zhen Zeng6, Mona Khan6, Peter Mombaerts6, Jennifer Harrow7, Darren W. Logan3,8,9 and Adam Frankish1#. 10 1. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 2. Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK. 3. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. 15 4. Brandeis University, 415 South Street, Waltham, MA 02453, USA. 5. Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium. 6. Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438 Frankfurt, Germany. 7. ELIXIR, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 8. Monell Chemical Senses Center, Philadelphia, PA 19104, USA. 20 9. Waltham Centre for Pet Nutrition, Leicestershire, LE14 4RT, UK. † These authors contributed equally to this work. # To whom correspondence should be addressed. Email: [email protected], [email protected] and [email protected]. -
Repetitive Elements in Humans
International Journal of Molecular Sciences Review Repetitive Elements in Humans Thomas Liehr Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany; [email protected] Abstract: Repetitive DNA in humans is still widely considered to be meaningless, and variations within this part of the genome are generally considered to be harmless to the carrier. In contrast, for euchromatic variation, one becomes more careful in classifying inter-individual differences as meaningless and rather tends to see them as possible influencers of the so-called ‘genetic background’, being able to at least potentially influence disease susceptibilities. Here, the known ‘bad boys’ among repetitive DNAs are reviewed. Variable numbers of tandem repeats (VNTRs = micro- and minisatellites), small-scale repetitive elements (SSREs) and even chromosomal heteromorphisms (CHs) may therefore have direct or indirect influences on human diseases and susceptibilities. Summarizing this specific aspect here for the first time should contribute to stimulating more research on human repetitive DNA. It should also become clear that these kinds of studies must be done at all available levels of resolution, i.e., from the base pair to chromosomal level and, importantly, the epigenetic level, as well. Keywords: variable numbers of tandem repeats (VNTRs); microsatellites; minisatellites; small-scale repetitive elements (SSREs); chromosomal heteromorphisms (CHs); higher-order repeat (HOR); retroviral DNA 1. Introduction Citation: Liehr, T. Repetitive In humans, like in other higher species, the genome of one individual never looks 100% Elements in Humans. Int. J. Mol. Sci. alike to another one [1], even among those of the same gender or between monozygotic 2021, 22, 2072. -
GENCODE: the Reference Human Genome Annotation for the ENCODE Project
Downloaded from genome.cshlp.org on September 26, 2012 - Published by Cold Spring Harbor Laboratory Press Resource GENCODE: The reference human genome annotation for The ENCODE Project Jennifer Harrow,1,9 Adam Frankish,1 Jose M. Gonzalez,1 Electra Tapanari,1 Mark Diekhans,2 Felix Kokocinski,1 Bronwen L. Aken,1 Daniel Barrell,1 Amonida Zadissa,1 Stephen Searle,1 If Barnes,1 Alexandra Bignell,1 Veronika Boychenko,1 Toby Hunt,1 Mike Kay,1 Gaurab Mukherjee,1 Jeena Rajan,1 Gloria Despacio-Reyes,1 Gary Saunders,1 Charles Steward,1 Rachel Harte,2 Michael Lin,3 Ce´dric Howald,4 Andrea Tanzer,5 Thomas Derrien,4 Jacqueline Chrast,4 Nathalie Walters,4 Suganthi Balasubramanian,6 Baikang Pei,6 Michael Tress,7 Jose Manuel Rodriguez,7 Iakes Ezkurdia,7 Jeltje van Baren,8 Michael Brent,8 David Haussler,2 Manolis Kellis,3 Alfonso Valencia,7 Alexandre Reymond,4 Mark Gerstein,6 Roderic Guigo´,5 and Tim J. Hubbard1,9 1Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; 2University of California, Santa Cruz, California 95064, USA; 3Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 4Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; 5Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Catalonia, Spain; 6Yale University, New Haven, Connecticut 06520-8047, USA; 7Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain; 8Center for Genome Sciences & Systems Biology, St. Louis, Missouri 63130, USA The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computa- tional analysis, manual annotation, and experimental validation. -
PDF Datasheet
Product Datasheet BEND2 Overexpression Lysate NBL1-09637 Unit Size: 0.1 mg Store at -80C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBL1-09637 Updated 3/17/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBL1-09637 Page 1 of 2 v.20.1 Updated 3/17/2020 NBL1-09637 BEND2 Overexpression Lysate Product Information Unit Size 0.1 mg Concentration The exact concentration of the protein of interest cannot be determined for overexpression lysates. Please contact technical support for more information. Storage Store at -80C. Avoid freeze-thaw cycles. Buffer RIPA buffer Target Molecular Weight 87.7 kDa Product Description Description Transient overexpression lysate of BEN domain containing 2 (BEND2) The lysate was created in HEK293T cells, using Plasmid ID RC206228 and based on accession number NM_153346. The protein contains a C-MYC/DDK Tag. Gene ID 139105 Gene Symbol BEND2 Species Human Notes HEK293T cells in 10-cm dishes were transiently transfected with a non-lipid polymer transfection reagent specially designed and manufactured for large volume DNA transfection. Transfected cells were cultured for 48hrs before collection. The cells were lysed in modified RIPA buffer (25mM Tris-HCl pH7.6, 150mM NaCl, 1% NP-40, 1mM EDTA, 1xProteinase inhibitor cocktail mix, 1mM PMSF and 1mM Na3VO4, and then centrifuged to clarify the lysate. Protein concentration was measured by BCA protein assay kit.This product is manufactured by and sold under license from OriGene Technologies and its use is limited solely for research purposes. -
Misexpression of Cancer/Testis (Ct) Genes in Tumor Cells and the Potential Role of Dream Complex and the Retinoblastoma Protein Rb in Soma-To-Germline Transformation
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2019 MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION SABHA M. ALHEWAT Michigan Technological University, [email protected] Copyright 2019 SABHA M. ALHEWAT Recommended Citation ALHEWAT, SABHA M., "MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO- GERMLINE TRANSFORMATION", Open Access Master's Thesis, Michigan Technological University, 2019. https://doi.org/10.37099/mtu.dc.etdr/933 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Cancer Biology Commons, and the Cell Biology Commons MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION By Sabha Salem Alhewati A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Biological Sciences MICHIGAN TECHNOLOGICAL UNIVERSITY 2019 © 2019 Sabha Alhewati This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Biological Sciences. Department of Biological Sciences Thesis Advisor: Paul Goetsch. Committee Member: Ebenezer Tumban. Committee Member: Zhiying Shan. Department Chair: Chandrashekhar Joshi. Table of Contents List of figures .......................................................................................................................v -
Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.