Recommendations for Breeding and Holding of Regular Mealworm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesser Mealworm, Litter Beetle, Alphitobius Diaperinus (Panzer) (Insecta: Coleoptera: Tenebrionidae)1 James C
EENY-367 Lesser Mealworm, Litter Beetle, Alphitobius diaperinus (Panzer) (Insecta: Coleoptera: Tenebrionidae)1 James C. Dunford and Phillip E. Kaufman2 Introduction encountered in stored products (Green 1980). The other known species in the United States, A. laevigatus (Fabricius) The lesser mealworm, Alphitobius diaperinus (Panzer), is or black fungus beetle, is less commonly encountered and a cosmopolitan general stored products pest of particular may also vector pathogens and parasites and occasionally importance as a vector and competent reservoir of several cause damage to poultry housing. poultry pathogens and parasites. It can also cause damage to poultry housing and is suspected to be a health risk to humans in close contact with larvae and adults. Adults can become a nuisance when they move en masse toward artificial lights generated by residences near fields where beetle-infested manure has been spread (Axtell 1999). Alphitobius diaperinus inhabits poultry droppings and litter and is considered a significant pest in the poultry industry. Numerous studies have been conducted on lesser meal- worm biology, physiology, and management. Lambkin (2001) conducted a thorough review of relevant scientific literature in reference to A. diaperinus and provides a good understanding of the biology, ecology and bionomics of the pest. Bruvo et al. (1995) conducted molecular work to determine satellite DNA variants on the chromosomes of A. diaperinus. Alphitobius diaperinus is a member of the tenebrionid tribe Alphitobiini (Doyen 1989), which comprises four genera worldwide (Aalbu et al. 2002). Two genera occur Figure 1. Adult male lesser mealworm, Alphitobius diaperinus (Panzer). in the United States, of which there are two species in the This specimen taken from Henderson County, North Carolina. -
Contribution of Honeybees Towards the Net Environmental Benefits of Food
Science of the Total Environment 756 (2021) 143880 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Contribution of honeybees towards the net environmental benefits of food Jani Sillman a,⁎, Ville Uusitalo a, Tuire Tapanen a, Anneli Salonen b, Risto Soukka a, Helena Kahiluoto a a LUT University, School of Energy Systems, Sustainability Science, P.O. Box 20, 53851 Lappeenranta, Finland b Finnish beekeepers' association, Ullanlinnankatu 1 A 3, 00130 Helsinki, Finland HIGHLIGHTS GRAPHICAL ABSTRACT • Shifts in distances to planetary bound- aries were quantified using LCA. • Beekeeping reduced environmental im- pacts of protein and sugar systems. • Water use was reduced more than land use and climate change. • Sugar use and transportation induced most beekeeping impacts. • Including pollination revealed the net- positive impact of beekeeping. article info abstract Article history: Beekeeping provides honey, protein-containing drone broods and pollen, and yield-increasing pollination ser- Received 3 June 2020 vices. This study tested the hypothesis that beekeeping can result in net-positive impacts, if pollination services Received in revised form 17 November 2020 and protein-containing by-products are utilised. As a case example, Finnish beekeeping practices were used. The Accepted 17 November 2020 study was performed using two different approaches. In both approaches, the evaluated impacts were related to Available online 3 December 2020 climate change, land use, and freshwater use, and were scaled down to represent one beehive. The first approach Editor: Deyi Hou considered honey production with pollination services and the replacement of alternative products with co- products. The impacts were normalised to correspond with planetary boundary criteria. -
Entomophagy: a Narrative Review on Nutritional Value, Safety, Cultural Acceptance and a Focus on the Role of Food Neophobia in Italy
Review Entomophagy: A Narrative Review on Nutritional Value, Safety, Cultural Acceptance and A Focus on the Role of Food Neophobia in Italy Elisabetta Toti 1,* , Luca Massaro 1, Aisha Kais 1, Paola Aiello 2,3, Maura Palmery 2 and Ilaria Peluso 1 1 Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy; [email protected] (L.M.); [email protected] (A.K.); [email protected] (I.P.) 2 Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (P.A.); [email protected] (M.P.) 3 Faculty of Health Sciences, Universidad Católica San Antonio de Murcia, Murcia (UCAM), 30107 Murcia, Spain * Correspondence: [email protected]; Tel.: +39-06-51494624 Received: 24 April 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: In recent years, the consumption of insects, or entomophagy, has produced an increasing interest amongst scientists and ecologists as a potential source of animal protein. Eating insects is also interesting in terms of low greenhouse gas emissions and low land use. In contrast to tropical countries, where most of the 2000 edible insect species are traditionally consumed, the concept of eating insects is still new to Western culture and diet. Culture and eating habits exert a great influence on what is considered edible in the Mediterranean area, especially in Italy, where the preservation of culinary traditions is a predominant factor affecting dietary behaviour. The purpose of this narrative paper is to provide an overview of the main topics related to entomophagy. -
Characterization of Mealworm Powder and Its Fortification in All-Purpose
i UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Jackson College of Graduate Studies Characterization of Mealworm Powder and its Fortification In all-purpose Flour Bread A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN NUTRITION AND FOOD SCINECE By Mojdeh Akbaran Edmond, Oklahoma Date 02/08/2019 iii To my father, Ghasem Ali Akbaran And my mother, Mohtaram Ghazanfari iv Table of Contents List of Figures ......................................................................................................... vii List of Tables ............................................................................................................ ix Acknowledgment ....................................................................................................... x Abstract ................................................................................................................... xi 1.1 CHAPTER ONE: INTRODUCTION .................................................................. 1 Research Question: .................................................................................................................... 4 Objective One ............................................................................................................................. 4 Objective Two ............................................................................................................................ 4 CHAPTER TWO: LITERATURE REVIEW .......................................................... -
Darkling Beetles and Mealworms Theresa A
Darkling Beetles and Mealworms Theresa A. Dellinger and Eric R. Day, Department of Entomology, Virginia Tech Description Darkling beetles belong in the beetle family Tenebrionidae, which consists of more than 20,000 species of beetles. Adult darkling beetles widely range in shape and size, with most measuring from 2 – 19 mm (0.13” – 0.75”). Adults are usually a reddish-brown to brownish-black in color and can be shiny or dull. The elytra (the wing covers) can be smooth, grooved, or otherwise sculptured. Most do not have colorful patterns on their wing covers. Adults are most active at night and tend to avoid bright lights. Darkling beetle larvae are often referred to as mealworms or false wireworms. They are long, hard-bodied grubs with a cylindrical shape and are shiny yellow-brown to darKer brown in color. They are active crawlers. Yellow mealworm larva, top. Dark mealworm larva, bottom. Clemson University-USDA Cooperative Adult yellow mealworm, Tenebrio molitor. Extension Slide Series, Bugwood.org. Clemson University-USDA Cooperative Extension Slide Series, Bugwood.org. Life Cycle Darkling beetles have a complete life cycle with egg, larval, pupal, and adult stages. Most species of darkling beetles have a slow rate of development and may live for a year as an adult. Species living on grains or other stored products may develop faster. Habitat/Distribution Darkling beetles are found throughout the world except for places with very cold climates. They are scavengers and omnivores, feeding on decomposing plant material, dead insects, fungi, and stored products. Only a handful of darkling beetles are considered pests; the vast majority of them live in the wild and pose no harm. -
Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm (Tenebrio Molitor) Powders
foods Article Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm (Tenebrio molitor) Powders Pauline Kooh 1, Vanessa Jury 2, Sophie Laurent 2, Frédérique Audiat-Perrin 1, Moez Sanaa 1, Vincent Tesson 3 , Michel Federighi 3 and Géraldine Boué 3,* 1 French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; [email protected] (P.K.); [email protected] (F.A.-P.); [email protected] (M.S.) 2 Oniris, Université de Nantes, CNRS, GEPEA, UMR 6144 F-44000 Nantes, France; [email protected] (V.J.); [email protected] (S.L.) 3 INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; [email protected] (V.T.); [email protected] (M.F.) * Correspondence: [email protected] Received: 17 September 2020; Accepted: 18 October 2020; Published: 24 October 2020 Abstract: Entomophagy has been part of human diets for a long time in a significant part of the world, but insects are considered to be a novel food everywhere else. It would appear to be a strategic alternative in the future of human diet to face the challenge of ensuring food security for a growing world population, using more environmentally sustainable production systems than those required for the rearing of other animals. Tenebrio molitor, called yellow mealworm, is one of the most interesting insect species in view of mass rearing, and can be processed into a powder that ensures a long shelf life for its use in many potential products. -
The Yellow Mealworm As a Novel Source of Protein
American Journal of Agricultural and Biological Sciences 4 (4): 319-331, 2009 ISSN 1557-4989 © 2009 Science Publications The Yellow Mealworm as a Novel Source of Protein 1A.E. Ghaly and 2F.N. Alkoaik 1Department of Biological Engineering, Dalhousie University, Halifax, Nova Scotia, Canada 2Department of Agricultural engineering, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia Abstract: Problem statement: Yellow mealworms of different sizes (4.8-182.7 mg) were grown in a medium of wheat flour and brewer’s yeast (95:5 by weight) to evaluate their potential as a protein source. Approach: There was an initial adjustment period (3-9 days) observed during which the younger larvae (4.8-61.1 mg) grew slowly while the older ones (80.3-182.7 mg) lost weight. After this initial period, the younger larvae (4.8-122.1 mg) increased in weight while the older ones (139.6-182.7 mg) continued to lose weight as they entered the pupal stage. For efficient production of larvae, they should be harvested at a weight of 100-110 mg. The moisture issue in the medium presents an important management problem for commercial production. Results: A system in which eggs are separate from adults and hatched in separate chambers would alleviate the danger of losing the larval population due to microbial infection. The moisture, ash, protein and fat contents were 58.1-61.5, 1.8- 2.2, 24.3-27.6 and 12.0-12.5%, respectively. Yellow mealworms seem to be a promising source of protein for human consumption with the required fat and essential amino acids. -
Body-Enlarging Effect of Royal Jelly in a Non-Holometabolous Insect Species, Gryllus Bimaculatus
© 2016. Published by The Company of Biologists Ltd | Biology Open (2016) 5, 770-776 doi:10.1242/bio.019190 RESEARCH ARTICLE Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus Atsushi Miyashita, Hayato Kizaki, Kazuhisa Sekimizu and Chikara Kaito* ABSTRACT (Conlon and Raff, 1999; Otto, 2007). These studies have provided Honeybee royal jelly is reported to have body-enlarging effects in significant insight into the principles of size regulation of living holometabolous insects such as the honeybee, fly and silkmoth, but organisms, although recent concerns over genetically modified its effect in non-holometabolous insect species has not yet been organisms have led researchers to evaluate other types of strategies examined. The present study confirmed the body-enlarging effect in to enlarge animals for industrial purposes. silkmoths fed an artificial diet instead of mulberry leaves used in the As a non-genetic size manipulation, oral ingestion of royal jelly previous literature. Administration of honeybee royal jelly to silkmoth by larvae of the honeybee, Apis mellifera, a holometabolous from early larval stage increased the size of female pupae and hymenopteran insect, induces queen differentiation, leading to adult moths, but not larvae (at the late larval stage) or male pupae. enlarged bodies. Royal jelly contains 12-15% protein, 10-16% We further examined the body-enlarging effect of royal jelly in a sugar, 3-6% lipids (percentages are wet-weight basis), vitamins, non-holometabolous species, the two-spotted cricket Gryllus salts, and free amino acids (Buttstedt et al., 2014). Royal jelly bimaculatus, which belongs to the evolutionarily primitive group contains proteins, named major royal jelly proteins (MRJPs), which Polyneoptera. -
The Feasibility of Using Yellow Mealworms (Tenebrio Molitor): Towards a Sustainable Aquafeed Industry
animals Review The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry Laiba Shafique 1, Hany M. R. Abdel-Latif 2,† , Faiz-ul Hassan 3, Mahmoud Alagawany 4 , Mohammed A. E. Naiel 5, Mahmoud A. O. Dawood 6 , Sevdan Yilmaz 7 and Qingyou Liu 1,*,† 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; [email protected] 2 Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; [email protected] 3 Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan; [email protected] 4 Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; [email protected] 5 Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; [email protected] 6 Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; [email protected] 7 Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Citation: Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.-u.; Alagawany, M.; Simple Summary: The expansion of the aquaculture industry depends mainly on aquafeed avail- Naiel, M.A.E.; Dawood, M.A.O.; ability at reasonable prices. The common ingredients of aquafeed (e.g., fish and soybean meals) are Yilmaz, S.; Liu, Q. The Feasibility of not sustainable due to a lack of resources and increasing prices. Seeking alternative non-traditional Using Yellow Mealworms (Tenebrio ingredients is among the choices of nutritionists to produce high-quality feed at a feasible cost. -
Toxicity of Moist Snuff and Impact on Various Stages of Darkling Beetles (Tenebrio Molitor)
Toxicity of Moist Snuff and Impact on Various Stages of Darkling Beetles (Tenebrio molitor) Lisa Collins with Latisha Edwards Fayetteville State University Faculty Mentor: Shirley Chao Fayetteville State University ABSTRACT Moist snuff is a manufactured form of smokeless tobacco that, when consumed chronically, contributes to the leading cause of premature deaths in the world. Snuff contains several known toxins, such as nicotine, that have been proven to adversely affect organisms exposed to it through tobacco products. The objective of this study was to test whether moist snuff adversely affects darkling beetles by increasing mortality and hindering normal development of Tenebrio larvae. Results indicate that moist snuff did increase mortality, but also increased the developmental rate of survivors. In addition, a positive trend was observed in which moist snuff increased the amount of protein per insect without increasing average weight. Increases in protein amounts suggest possible compensatory responses to the toxic insult- grounds for further research. insecticide. Variable amounts of nicotine ccording to the Centers for Disease are found in tobacco products, and depend AControl and Prevention (2011), to- on brand and product type. Studies show bacco use is the leading cause of prevent- that nicotine in cigarettes account for ap- able death in the United States and a ma- proximately 1.21 mg to 2.16 mg per ciga- jor cause of premature death worldwide. rette (Keithly, Cullen, & Land, 2004). For Tobacco is produced and manufactured the purposes of this study, the focus is on into several products, which may be di- moist snuff. Among the amalgam of chem- vided into the categories of smoking to- icals, nicotine has been found in concentra- bacco and smokeless tobacco. -
Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus Muelleri (Coleoptera: Lucanidae)
insects Article Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleoptera: Lucanidae) 1,2, 1,2, 1,2, Miaomiao Wang y, Xingjia Xiang y and Xia Wan * 1 School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; [email protected] (M.W.); [email protected] (X.X.) 2 Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China * Correspondence: [email protected] These authors contributed equally to this article. y Received: 19 September 2020; Accepted: 17 October 2020; Published: 21 October 2020 Simple Summary: Phalacrognathus muelleri is naturally distributed in Queensland (Australia) and New Guinea, and this species can be successfully bred under artificial conditions. In this study, we compared gut bacterial community structure among different life stages. There were dramatic shifts in gut bacterial community structure between larvae and adults, which was probably shaped by their diet. The significant differences between early instar and final instars larvae suggested that certain life stages are associated with a defined gut bacterial community. Our results contribute to a better understanding of the potential role of gut microbiota in a host’s growth and development, and the data will benefit stag beetle conservation in artificial feeding conditions. Abstract: Although stag beetles are popular saprophytic insects, there are few studies about their gut bacterial community. This study focused on the gut bacterial community structure of the rainbow stag beetle (i.e., Phalacrognathus muelleri) in its larvae (three instars) and adult stages, using high throughput sequencing (Illumina Miseq). Our aim was to compare the gut bacterial community structure among different life stages. -
Signatures of DNA Methylation Across Insects Suggest Reduced DNA Methylation Levels in Holometabola
GBE Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola Panagiotis Provataris1, Karen Meusemann1,2,3, Oliver Niehuis1,2,SonjaGrath4,*, and Bernhard Misof1,* 1Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany 2Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany 3Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia Downloaded from https://academic.oup.com/gbe/article-abstract/10/4/1185/4943971 by guest on 13 December 2019 4Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universitat€ Mu¨ nchen, Planegg, Germany *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: March 17, 2018 Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA meth- ylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects.