The Basal Pharmacology of Palmitoylethanolamide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A. -
Social Psychoneuroimmunology: Understanding Bidirectional Links Between Social Experiences and the Immune System
Brain, Behavior, and Immunity xxx (xxxx) xxx Contents lists available at ScienceDirect Brain Behavior and Immunity journal homepage: www.elsevier.com/locate/ybrbi Viewpoint Social psychoneuroimmunology: Understanding bidirectional links between social experiences and the immune system Keely A. Muscatell University of North Carolina at Chapel Hill, Chapel Hill, NC, United States Does the immune system have a “social life,” wherein our social have historically signaled) increased likelihood of injury (e.g., ostra experiences can affect and be affected by the activities of the immune cism) or infection (e.g., socially connecting with others) will lead to system? Research in the nascent subfield of social psychoneuroimmunol changes in the activities of the immune system (Kemeny, 2009; Eisen ogy suggests that the answer to this question is a resounding “yes” – there berger et al., 2017; Gassen and Hill, 2019; Slavich and Cole, 2013; are profound bidirectional connections between social experiences and Leschak and Eisenberger, 2019). The second core tenant is that the brain the immune system. Yet there are also vast opportunities for discovery in is constantly monitoring the physiological state of the body and inte this new subfield. In this article, I briefly define and outline some core grating this information with signals from the broader environment to tenants of social psychoneuroimmunology (Fig. 1). I also highlight op gauge metabolic demands and guide adaptive behavior (Sterling, 2012). portunities for future work in this area. Bringing together social psy As such, even relatively minor fluctuationsin immune system activation chological and psychoneuroimmunology research will undoubtedly lead outside of an experience of acute illness, injury, or chronic disease, can to important discoveries about the interconnections between the im feed back to the brain to guide social cognition and behavior. -
Palmitoylethanolamide and Its Biobehavioral Correlates in Autism Spectrum Disorder: a Systematic Review of Human and Animal Evidence
nutrients Review Palmitoylethanolamide and Its Biobehavioral Correlates in Autism Spectrum Disorder: A Systematic Review of Human and Animal Evidence Marco Colizzi 1,2,3,* , Riccardo Bortoletto 1, Rosalia Costa 4 and Leonardo Zoccante 1 1 Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, 37126 Verona, Italy; [email protected] (R.B.); [email protected] (L.Z.) 2 Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy 3 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK 4 Community Mental Health Team, Department of Mental Health, ASST Mantova, 46100 Mantua, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-045-812-6832 Abstract: Autism spectrum disorder (ASD) pathophysiology is not completely understood; how- ever, altered inflammatory response and glutamate signaling have been reported, leading to the investigation of molecules targeting the immune-glutamatergic system in ASD treatment. Palmi- toylethanolamide (PEA) is a naturally occurring saturated N-acylethanolamine that has proven to be effective in controlling inflammation, depression, epilepsy, and pain, possibly through a neuro- Citation: Colizzi, M.; Bortoletto, R.; protective role against glutamate toxicity. Here, we systematically reviewed all human and animal Costa, R.; Zoccante, L. studies examining PEA and its biobehavioral correlates in ASD. Studies indicate altered serum/brain Palmitoylethanolamide and Its levels of PEA and other endocannabinoids (ECBs)/acylethanolamines (AEs) in ASD. Altered PEA Biobehavioral Correlates in Autism signaling response to social exposure and altered expression/activity of enzymes responsible for Spectrum Disorder: A Systematic the synthesis and catalysis of ECBs/AEs, as well as downregulation of the peroxisome proliferator Review of Human and Animal α α Evidence. -
Stress, Emotion Regulation, and Well-Being Among Canadian Faculty Members in Research-Intensive Universities
social sciences $€ £ ¥ Article Stress, Emotion Regulation, and Well-Being among Canadian Faculty Members in Research-Intensive Universities Raheleh Salimzadeh *, Nathan C. Hall and Alenoush Saroyan Department of Educational and Counselling Psychology, McGill University, Montreal, QC H3A 1Y2, Canada; [email protected] (N.C.H.); [email protected] (A.S.) * Correspondence: [email protected] Received: 22 September 2020; Accepted: 25 November 2020; Published: 10 December 2020 Abstract: Existing research reveals the academic profession to be stressful and emotion-laden. Recent evidence further shows job-related stress and emotion regulation to impact faculty well-being and productivity. The present study recruited 414 Canadian faculty members from 13 English-speaking research-intensive universities. We examined the associations between perceived stressors, emotion regulation strategies, including reappraisal, suppression, adaptive upregulation of positive emotions, maladaptive downregulation of positive emotions, as well as adaptive and maladaptive downregulation of negative emotions, and well-being outcomes (emotional exhaustion, job satisfaction, quitting intentions, psychological maladjustment, and illness symptoms). Additionally, the study explored the moderating role of stress, gender, and years of experience in the link between emotion regulation and well-being as well as the interactions between adaptive and maladaptive emotion regulation strategies in predicting well-being. The results revealed that cognitive reappraisal was a health-beneficial strategy, whereas suppression and maladaptive strategies for downregulating positive and negative emotions were detrimental. Strategies previously defined as adaptive for downregulating negative emotions and upregulating positive emotions did not significantly predict well-being. In contrast, strategies for downregulating negative emotions previously defined as dysfunctional showed the strongest maladaptive associations with ill health. -
Which Is It: ADHD, Bipolar Disorder, Or PTSD?
HEALINGHEALINGA PUBLICATION OF THE HCH CLINICIANS’ HANDSHANDS NETWORK Vol. 10, No. 3 I August 2006 Which Is It: ADHD, Bipolar Disorder, or PTSD? Across the spectrum of mental health care, Anxiety Disorders, Attention Deficit Hyperactivity Disorders, and Mood Disorders often appear to overlap, as well as co-occur with substance abuse. Learning to differentiate between ADHD, bipolar disorder, and PTSD is crucial for HCH clinicians as they move toward integrated primary and behavioral health care models to serve homeless clients. The primary focus of this issue is differential diagnosis. Readers interested in more detailed clinical information about etiology, treatment, and other interventions are referred to a number of helpful resources listed on page 6. HOMELESS PEOPLE & BEHAVIORAL HEALTH Close to a symptoms exhibited by clients with ADHD, bipolar disorder, or quarter of the estimated 200,000 people who experience long-term, PTSD that make definitive diagnosis formidable. The second chronic homelessness each year in the U.S. suffer from serious mental causative issue is how clients’ illnesses affect their homelessness. illness and as many as 40 percent have substance use disorders, often Understanding that clinical and research scientists and social workers with other co-occurring health problems. Although the majority of continually try to tease out the impact of living circumstances and people experiencing homelessness are able to access resources comorbidities, we recognize the importance of causal issues but set through their extended family and community allowing them to them aside to concentrate primarily on how to achieve accurate rebound more quickly, those who are chronically homeless have few diagnoses in a challenging care environment. -
Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious?
molecules Review Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious? Stephen Schultz 1, Georgianna G. Gould 1, Nicola Antonucci 2, Anna Lisa Brigida 3 and Dario Siniscalco 4,* 1 Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas (UT) Health Science Center San Antonio, San Antonio, TX 78229, USA; [email protected] (S.S.); [email protected] (G.G.G.) 2 Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy; [email protected] 3 Department of Precision Medicine, University of Campania, 80138 Naples, Italy; [email protected] 4 Department of Experimental Medicine, University of Campania, 80138 Naples, Italy * Correspondence: [email protected] Abstract: Persistent deficits in social communication and interaction, and restricted, repetitive pat- terns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD. The endocannabi- noid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signal- ing pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alter- Citation: Schultz, S.; Gould, G.G.; ations of the ECS have been reported in both the brain and the immune system of ASD subjects. ASD Antonucci, N.; Brigida, A.L.; Siniscalco, D. Endocannabinoid children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen System Dysregulation from use has been reported to be associated with an increased risk of ASD. -
A Comprehensive Model of Stress-Induced Binge Eating: the Role of Cognitive Restraint, Negative Affect, and Impulsivity in Binge Eating As a Response to Stress
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-21-2020 A Comprehensive Model of Stress-induced Binge Eating: The Role of Cognitive Restraint, Negative Affect, and Impulsivity In Binge Eating as a Response to Stress Rachael M. Huff [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Psychological Phenomena and Processes Commons, and the Women's Health Commons Recommended Citation Huff, Rachael M., "A Comprehensive Model of Stress-induced Binge Eating: The Role of Cognitive Restraint, Negative Affect, and Impulsivity In Binge Eating as a Response to Stress" (2020). Electronic Theses and Dissertations. 3238. https://digitalcommons.library.umaine.edu/etd/3238 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Running head: A COMPREHENSIVE MODEL OF STRESS-INDUCED BINGE EATING A COMPREHENSIVE MODEL OF STRESS-INDUCED BINGE EATING: THE ROLE OF COGNITIVE RESTRAINT, NEGATIVE AFFECT, AND IMPULSIVITY IN BINGE EATING AS A RESPONSE TO STRESS By Rachael M. Huff B.A., Michigan Technological University, 2014 M.A., University of Maine, 2016 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Clinical Psychology) The Graduate School The University of Maine August 2020 Advisory Committee: Shannon K. McCoy, Associate Professor of Psychology, Chair Emily A. P. Haigh, Assistant Professor of Psychology Shawn W. -
Grunddokument 2
The cellular processing of the endocannabinoid anandamide and its pharmacological manipulation Lina Thors Department of Pharmacology and Clinical Neuroscience SE-901 87 Umeå, Sweden Umeå 2009 1 Copyright©Lina Thors ISBN: 978-91-7264-732-9 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden 2009 2 Abstract Anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG) exert most of their actions by binding to cannabinoid receptors. The effects of the endocannabinoids are short-lived due to rapid cellular accumulation and metabolism, for AEA, primarily by the enzymes fatty acid amide hydrolase (FAAH). This has led to the hypothesis that by inhibition of the cellular processing of AEA, beneficial effects in conditions such as pain and inflammation can be enhanced. The overall aim of the present thesis has been to examine the mechanisms involved in the cellular processing of AEA and how they can be influenced pharmacologically by both synthetic natural compounds. Liposomes, artificial membranes, were used in paper I to study the membrane retention of AEA. The AEA retention mimicked the early properties of AEA accumulation, such as temperature- dependency and saturability. In paper II, FAAH was blocked by a selective inhibitor, URB597, and reduced the accumulation of AEA into RBL2H3 basophilic leukaemia cells by approximately half. Treating intact cells with the tyrosine kinase inhibitor genistein, an isoflavone found in soy plants and known to disrupt caveolae-related endocytosis, reduced the AEA accumulation by half, but in combination with URB597 no further decrease was seen. Further on, the effects of genistein upon uptake were secondary to inhibition of FAAH. -
SYNTHESIS of 3-HETEROCYCLE PHENYL N-ALKYL CARBAMATES and THEIR ACTIVITY AS FAAH INHIBITORS Doctoral Dissertation
TKK Dissertations 203 Espoo 2009 SYNTHESIS OF 3-HETEROCYCLE PHENYL N-ALKYL CARBAMATES AND THEIR ACTIVITY AS FAAH INHIBITORS Doctoral Dissertation Mikko Myllymäki Helsinki University of Technology Faculty of Chemistry and Materials Sciences Department of Chemistry TKK Dissertations 203 Espoo 2009 SYNTHESIS OF 3-HETEROCYCLE PHENYL N-ALKYL CARBAMATES AND THEIR ACTIVITY AS FAAH INHIBITORS Doctoral Dissertation Mikko Myllymäki Dissertation for the degree of Doctor of Philosophy to be presented with due permission of the Faculty of Chemistry and Materials Sciences for public examination and debate in Auditorium KE2 (Komppa Auditorium) at Helsinki University of Technology (Espoo, Finland) on the 19th of December, 2009, at 12 noon. Helsinki University of Technology Faculty of Chemistry and Materials Sciences Department of Chemistry Teknillinen korkeakoulu Kemian ja materiaalitieteiden tiedekunta Kemian laitos Distribution: Helsinki University of Technology Faculty of Chemistry and Materials Sciences Department of Chemistry P.O. Box 6100 (Kemistintie 1) FI - 02015 TKK FINLAND URL: http://chemistry.tkk.fi/ Tel. +358-9-470 22527 Fax +358-9-470 22538 E-mail: [email protected] © 2009 Mikko Myllymäki ISBN 978-952-248-240-2 ISBN 978-952-248-241-9 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2009/isbn9789522482419/ TKK-DISS-2686 Multiprint Oy Espoo 2009 3 AB HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF DOCTORAL DISSERTATION P.O. BOX 1000, FI-02015 TKK http://www.tkk.fi Author Mikko Juhani Myllymäki Name of the dissertation -
The Use of Cannabinoids in Animals and Therapeutic Implications for Veterinary Medicine: a Review
Veterinarni Medicina, 61, 2016 (3): 111–122 Review Article doi: 10.17221/8762-VETMED The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review L. Landa1, A. Sulcova2, P. Gbelec3 1Faculty of Medicine, Masaryk University, Brno, Czech Republic 2Central European Institute of Technology, Masaryk University, Brno, Czech Republic 3Veterinary Hospital and Ambulance AA Vet, Prague, Czech Republic ABSTRACT: Cannabinoids/medical marijuana and their possible therapeutic use have received increased atten- tion in human medicine during the last years. This increased attention is also an issue for veterinarians because particularly companion animal owners now show an increased interest in the use of these compounds in veteri- nary medicine. This review sets out to comprehensively summarise well known facts concerning properties of cannabinoids, their mechanisms of action, role of cannabinoid receptors and their classification. It outlines the main pharmacological effects of cannabinoids in laboratory rodents and it also discusses examples of possible beneficial use in other animal species (ferrets, cats, dogs, monkeys) that have been reported in the scientific lit- erature. Finally, the article deals with the prospective use of cannabinoids in veterinary medicine. We have not intended to review the topic of cannabinoids in an exhaustive manner; rather, our aim was to provide both the scientific community and clinical veterinarians with a brief, concise and understandable overview of the use of cannabinoids in veterinary -
What Is Post-Traumatic Stress Disorder, Or PTSD? Some People Develop Post-Traumatic Stress Disorder (PTSD) After Experiencing a Shocking, Scary, Or Dangerous Event
Post-Traumatic Stress Disorder National Institute of Mental Health What is post-traumatic stress disorder, or PTSD? Some people develop post-traumatic stress disorder (PTSD) after experiencing a shocking, scary, or dangerous event. It is natural to feel afraid during and after a traumatic situation. Fear is a part of the body’s normal “fight-or-flight” response, which helps us avoid or respond to potential danger. People may experience a range of reactions after trauma, and most will recover from their symptoms over time. Those who continue to experience symptoms may be diagnosed with PTSD. Who develops PTSD? Anyone can develop PTSD at any age. This includes combat veterans as well as people who have experienced or witnessed a physical or sexual assault, abuse, an accident, a disaster, a terror attack, or other serious events. People who have PTSD may feel stressed or frightened, even when they are no longer in danger. Not everyone with PTSD has been through a dangerous event. In some cases, learning that a relative or close friend experienced trauma can cause PTSD. According to the National Center for PTSD, a program of the U.S. Department of Veterans Affairs, about seven or eight of every 100 people will experience PTSD in their lifetime. Women are more likely than men to develop PTSD. Certain aspects of the traumatic event and some biological factors (such as genes) may make some people more likely to develop PTSD. What are the symptoms of PTSD? Symptoms of PTSD usually begin within 3 months of the traumatic incident, but they sometimes emerge later. -
Stress and Psychoneuroimmunology
Alternative Journal of Nursing July 2006, Issue 11 Stress and Psychoneuroimmunology Revisited: Using mind-body interventions to reduce stress Madeline M. Lorentz, RN, MSN Stress is a fundamental component of life. It is an unconscious response to a demand and when the demand is perceived as excessive, stress results along with diseases and conditions. Psychoneuroimmunology (PNI) has given importance to the relationship between stress and its physiological effects on the body. Scientists in this growing field have discovered that stress modulates the activities of the nervous, endocrine, and immune systems. Mind-body medicine is developing unconventional methods for coping with stress-related disorders. Nurses are empowered to implement mind-body interventions, such as meditation, imagery, therapeutic touch, and humor, to reduce stress and promote self-control and positive well-being for their patients. To ensure meeting the needs of the entire individual, mind, body and spirit, holistic nurses promote the concept of the mind-body connection. Their practice is based on a holistic view of the patient as they help patients manage their illness; how to think about it, cope with it and respond to it. Holistic approaches in health care hold promise for positive outcomes when the mind-body model is embraced. The concept of mind- body connection may be first attributed to Florence Nightingale who wrote in her Notes on Nursing in 1862 about the healing power of sensory stimulation and personal connection. A new discipline evolved from this type of thinking and is referred to as psychoneuroimmunology (PNI). The growing field of psychoneuroimmunology was established by scientists who were interested in gaining a better understanding of the interrelationship between the mind and body.