Arrhythmia? Does This Patient with Palpitations Have a Cardiac
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differentiating Between Anxiety, Syncope & Anaphylaxis
Differentiating between anxiety, syncope & anaphylaxis Dr. Réka Gustafson Medical Health Officer Vancouver Coastal Health Introduction Anaphylaxis is a rare but much feared side-effect of vaccination. Most vaccine providers will never see a case of true anaphylaxis due to vaccination, but need to be prepared to diagnose and respond to this medical emergency. Since anaphylaxis is so rare, most of us rely on guidelines to assist us in assessment and response. Due to the highly variable presentation, and absence of clinical trials, guidelines are by necessity often vague and very conservative. Guidelines are no substitute for good clinical judgment. Anaphylaxis Guidelines • “Anaphylaxis is a potentially life-threatening IgE mediated allergic reaction” – How many people die or have died from anaphylaxis after immunization? Can we predict who is likely to die from anaphylaxis? • “Anaphylaxis is one of the rarer events reported in the post-marketing surveillance” – How rare? Will I or my colleagues ever see a case? • “Changes develop over several minutes” – What is “several”? 1, 2, 10, 20 minutes? • “Even when there are mild symptoms initially, there is a potential for progression to a severe and even irreversible outcome” – Do I park my clinical judgment at the door? What do I look for in my clinical assessment? • “Fatalities during anaphylaxis usually result from delayed administration of epinephrine and from severe cardiac and respiratory complications. “ – What is delayed? How much time do I have? What is anaphylaxis? •an acute, potentially -
A Rare Cause of Circulatory Shock Stock Market
Anadolu Kardiyol Derg 2014; 14: 549-57 Case Reports 553 References scious and oriented, his skin was pale, cold and clammy. He had hypo- tension (70/40 mm Hg) and sinus tachycardia. Other physical and neu- 1. Martinez Garcia MA, Pastor A, Ferrando D, Nieto ML. Casual recognition rological examinations were normal. On his first anamnesis; there was of an azygous continuation of the inferior vena cava in a patient with lung no history of systemic disease or medication. Only he had had a viral cancer. Respiration 1999; 66: 66-8. [CrossRef] upper respiratory infection two weeks ago. There was no suspected 2. Chuang VP, Mena CE, Hoskins PA. Congenital anomalies of inferior vena toxin exposure except eating cultivated mushroom 8 hours ago. Multi- cava. Review of embryogenesis and presentation of a simplified classifi- systemic examination and multiple consultations were done in order to cation. Br J Radiol 1974; 47: 206-13. [CrossRef] find out the predisposing factor of this circulatory shock. Which type of 3. Drago F, Righi D, Placidi S, Russo MS, Di Mambro C, Silvetti MS, et al. Cryoablation of right-sided accessory pathways in children: report of shock is this? What is responsible for this clinical syndrome? efficacy and safety after 10-year experience and follow-up. Europace His hemogram and biochemical parameters including troponine-I 2013; 15: 1651-6. [CrossRef] were unremarkable except elevated renal function tests (Creatinine: 4. Guerra Ramos JM, Font ER, Moya I Mitjans A. Radiofrequency catheter 2.11 mg/dL). Arterial blood gases revealed hypoxia and hypocapnia. ablation of an accessory pathway through an anomalous inferior vena Except sinus tachycardia his all electrocardiographic and echocardi- cava with azygos continuation. -
Cardiac Symptoms and Physical Signs 11
CHAPTER 1 1 Cardiac Symptoms and Physical Signs 1.1 Common Cardiac Symptoms Angina Typical angina presents as a chest tightness or heaviness brought on by effort and relieved by rest. The sensation starts in the retrosternal region and radi- ates across the chest. Frequently it is associated with a leaden feeling in the arms. Occasionally it may present in more unusual sites, e.g. pain in the jaw or teeth on effort, without pain in the chest. It may be confused with oesopha- geal pain, or may present as epigastric or even hypochondrial pain. The most important feature is its relationship to effort. Unilateral chest pain (sub- mammary) is not usually cardiac pain, which is generally symmetrical in distribution. Angina is typically exacerbated by heavy meals, cold weather (just breath- ing in cold air is enough) and emotional disturbances. Arguments with col- leagues or family and watching exciting television are typical precipitating factors. Stable Angina This is angina induced by effort and relieved by rest. It does not increase in frequency or severity, and is predictable in nature. It is associated with ST- segment depression on ECG. Decubitus Angina This is angina induced by lying down at night or during sleep. It may be caused by an increase in LVEDV (and hence wall stress) on lying fl at, associ- ated with dreaming or getting between cold sheets. Coronary spasm may occur in REM sleep. It may respond to a diuretic, calcium antagonist or nitrate taken in the evening. Swanton’s Cardiology, sixth edition. By R. H. Swanton and S. -
Cardiology-EKG Michael Bradley
Cardiology/EKG Board Review Michael J. Bradley D.O. DME/Program Director Family Medicine Residency Objectives • Review general method for EKG interpretation • Review specific points of “data gathering” and “diagnoses” on EKG • Review treatment considerations • Review clinical cases/EKG’s • Board exam considerations EKG EKG – 12 Leads • Anterior Leads - V1, V2, V3, V4 • Inferior Leads – II, III, aVF • Left Lateral Leads – I, aVL, V5, V6 • Right Leads – aVR, V1 11 Step Method for Reading EKG’s • “Data Gathering” – steps 1-4 – 1. Standardization – make sure paper and paper speed is standardized – 2. Heart Rate – 3. Intervals – PR, QT, QRS width – 4. Axis – normal vs. deviation 11 Step Method for Reading EKG’s • “Diagnoses” – 5. Rhythm – 6. Atrioventricular (AV) Block Disturbances – 7. Bundle Branch Block or Hemiblock of – 8. Preexcitation Conduction – 9. Enlargement and Hypertrophy – 10. Coronary Artery Disease – 11. Utter Confusion • The Only EKG Book You’ll Ever Need Malcolm S. Thaler, MD Heart Rate • Regular Rhythms Heart Rate • Irregular Rhythms Intervals • Measure length of PR interval, QT interval, width of P wave, QRS complex QTc • QTc = QT interval corrected for heart rate – Uses Bazett’s Formula or Fridericia’s Formula • Long QT syndrome – inherited or acquired (>75 meds); torsades de ponites/VF; syncope, seizures, sudden death Axis Rhythm • 4 Questions – 1. Are normal P waves present? – 2. Are QRS complexes narrow or wide (≤ or ≥ 0.12)? – 3. What is relationship between P waves and QRS complexes? – 4. Is rhythm regular or irregular? -
The Patient with Palpitations Cardiac, Systemic Or Psychosomatic?
PEER REVIEWED FEATURE 2 CPD POINTS CLINICAL INVESTIGATIONS FROM THE RACP The patient with palpitations Cardiac, systemic or psychosomatic? LIANG-HAN LING MB BS, PhD, FRACP PETER KISTLER MB BS, PhD, FRACP In this series, we present authoritative advice on the investigation of a common clinical problem, especially commissioned for family doctors and written by members of the Royal Australasian College of Physicians. alpitations are one of the most commonly encountered KEY POINTS presenting complaints in general practice.1 A definitive • During the initial consultation, careful history taking, diagnosis depends on electrocardiographic recording physical examination and a baseline ECG often reveal the of the heart rhythm at the time of spontaneous symp- likely cause of palpitations to be cardiac, systemic or Ptoms.2 Management should address the underlying cause of psychosomatic. the palpitations, which may fall broadly into cardiac or • Concerted attempts should be made by both doctor and noncardiac categories (Box 1). Determining the underlying patient to obtain an electrocardiographic recording during cause requires careful history taking, physical examination palpitations, as this provides the basis for a definitive and the judicious use of investigations.3,4 diagnosis. • Echocardiography is essential to evaluate for the presence of MedicineToday 2015; 16(10): 43-47 structural heart disease. Dr Ling is a Cardiologist and Electrophysiologist at the Heart Centre, • Specific investigations should be performed if there is clinical The Alfred Hospital, Melbourne; Collaborating Researcher at the Baker IDI suspicion of an underlying systemic condition. Heart and Diabetes Institute, Melbourne; and National Heart Foundation • Referral of patients with documented arrhythmias to a Postdoctoral Research Fellow in the Faculty of Medicine, Dentistry and Health cardiac electrophysiologist is warranted, as many may be Sciences, University of Melbourne, Melbourne. -
Approach to Palpitations
CLINICAL Approach to palpitations Alex JA McLellan, Jonathan M Kalman PALPITATIONS are one of the most common be a normal response to stress, including presentations to general practice, and episodes of anxiety, and it is important while they are usually benign, they may to elucidate cause and effect. Age of Background Palpitations are one of the most also have life-threatening significance. the patient may give some indication common presentations to general Palpitations have been estimated to regarding the arrhythmia mechanism if practice. While they are usually benign, account for 16% of general practice supraventricular tachycardia is suspected; they may be associated with an adverse presentations and are the second most atrioventricular re-entrant tachycardia prognosis. common presentation to cardiologists (AVRT; Wolf-Parkinson-White syndrome) 1 Objectives after chest pain. Although the vast becomes less likely with increasing age, This article presents a systematic majority are benign, there are some whereas atrioventricular nodal re-entrant approach to the patient with palpitations clinical and electrocardiographic tachycardia (AVNRT), atrial fibrillation and addresses considerations of signs that determine when further and atrial tachycardia become more likely aetiology, history and examination; investigations may be necessary. Only (Figure 1).5 appropriate diagnostic work-up; rarely will palpitations be associated with cardiology/electrophysiology referral risk of serious cardiac events.2 This article and management strategies. presents a systematic approach to the History and physical examination Discussion patient with palpitations and addresses History Not all palpitations are due to consideration of the aetiology, history A thorough history is essential given arrhythmia, and because of the and examination; appropriate diagnostic the overwhelming majority of patients transitory nature of palpitations, the work-up will usually be performed workup; cardiology/electrophysiology will present in sinus rhythm, between 1 between episodes. -
Signs and Symptoms
Signs and Symptoms Some abnormal heart rhythms can happen without the person knowing it, while some may cause a feeling of the heart “racing,” lightheadedness, or dizziness. At some point in life, many adults Rapid Heartbeat – Tachycardia have had short-lived heart rhythm When the heart beats too quickly changes that are not serious. (usually above 100 beats per minute), the lower chambers, or Certain heart rhythms, especially ventricles, do not have enough time those that last long enough to af - to fill with blood, so they cannot ef - fect the heart’s function, can be fectively pump blood to the rest of serious or even deadly. the body. When this happens, some Palpitation or Skipped Beat people have symptoms such as: Although it may seem as if the Skipping a beat Slow Heartbeat – Bradycardia heart missed a beat, it has really had an early heartbeat — an extra If the heartbeat is too slow (usually Beating out of rhythm below 60 beats per minute), not beat that happens before the heart Palpitations has a chance to fill with blood. enough blood carrying oxygen Fast or racing heartbeat Therefore the squeeze is empty flows through the body. The symptoms of a slow heartbeat are: and results in a pause. Shortness of breath Fatigue (feeling tired) Fluttering Chest pain A fluttering sensation (like butter - Dizziness Dizziness flies in the chest) is usually due to Lightheadedness extra or “skipped beats” that occur Lightheadedness Fainting or near fainting one right after the other, or may be Fainting or near fainting caused by other kinds of abnormal heart rhythms. -
Bradycardia; Pulse Present
Bradycardia; Pulse Present History Signs and Symptoms Differential • Past medical history • HR < 60/min with hypotension, acute • Acute myocardial infarction • Medications altered mental status, chest pain, • Hypoxia / Hypothermia • Beta-Blockers acute CHF, seizures, syncope, or • Pacemaker failure • Calcium channel blockers shock secondary to bradycardia • Sinus bradycardia • Clonidine • Chest pain • Head injury (elevated ICP) or Stroke • Digoxin • Respiratory distress • Spinal cord lesion • Pacemaker • Hypotension or Shock • Sick sinus syndrome • Altered mental status • AV blocks (1°, 2°, or 3°) • Syncope • Overdose Heart Rate < 60 / min and Symptomatic: Exit to Hypotension, Acute AMS, Ischemic Chest Pain, Appropriate NO Acute CHF, Seizures, Syncope, or Shock Protocol(s) secondary to bradycardia Typically HR < 50 / min YES Airway Protocol(s) AR 1, 2, 3 if indicated Respiratory Distress Reversible Causes Protocol AR 4 if indicated Hypovolemia Hypoxia Chest Pain: Cardiac and STEMI Section Cardiac Protocol Adult Protocol AC 4 Hydrogen ion (acidosis) if indicated Hypothermia Hypo / Hyperkalemia Search for Reversible Causes B Tension pneumothorax 12 Lead ECG Procedure Tamponade; cardiac Toxins Suspected Beta- IV / IO Protocol UP 6 Thrombosis; pulmonary Blocker or Calcium P Cardiac Monitor (PE) Channel Blocker Thrombosis; coronary (MI) A Follow Overdose/ Toxic Ingestion Protocol TE 7 P If No Improvement Transcutaneous Pacing Procedure P (Consider earlier in 2nd or 3rd AVB) Notify Destination or Contact Medical Control Revised AC 2 01/01/2021 Any local EMS System changes to this document must follow the NC OEMS Protocol Change Policy and be approved by OEMS 1 Bradycardia; Pulse Present Adult Cardiac Adult Section Protocol Pearls • Recommended Exam: Mental Status, HEENT, Skin, Heart, Lungs, Abdomen, Back, Extremities, Neuro • Identifying signs and symptoms of poor perfusion caused by bradycardia are paramount. -
Hypovolemic Shock
Ask the Expert Emergency Medicine / Critical Care Peer Reviewed Hypovolemic Shock Garret E. Pachtinger, VMD, DACVECC Veterinary Specialty & Emergency Center Levittown, Pennsylvania You have asked… What is hypovolemic shock, and how should I manage it? Retroperitoneal effusion in a dog The expert says… hock, a syndrome in which clinical deterioration can occur quickly, requires careful analy- All forms of shock share sis and rapid treatment. Broad definitions for shock include inadequate cellular energy pro- a common concern: Sduction or the inability of the body to supply cells and tissues with oxygen and nutrients and remove waste products. Shock may result from a variety of underlying conditions and can be inadequate perfusion. classified into the broad categories of septic, hemorrhagic, obstructive, and hypovolemic shock.1-3 Regardless of the underlying cause, all forms of shock share a common concern: inadequate per- fusion.1,2 Perfusion (ie, flow to or through a given structure or tissue bed) is imperative for nutri- ent and oxygen delivery, as well as removal of cellular waste and byproducts of metabolism. Lack of adequate perfusion can result in cell death, morbidity, and, ultimately, mortality. Hypovolemic shock is one of the most common categories of shock seen in clinical veterinary medicine.4 In hypovolemic shock, perfusion is impaired as a result of an ineffective circulating blood volume. During initial circulating volume loss, there are a number of mechanisms to com- pensate for decreases in perfusion, including increased levels of 2,3-Bisphosphoglycerate, result- ing in a rightward shift in the oxyhemoglobin dissociation curve and a decreased blood viscosity. -
Update on Volume Resuscitation Hypovolemia and Hemorrhage Distribution of Body Fluids Hemorrhage and Hypovolemia
11/7/2015 HYPOVOLEMIA AND HEMORRHAGE • HUMAN CIRCULATORY SYSTEM OPERATES UPDATE ON VOLUME WITH A SMALL VOLUME AND A VERY EFFICIENT VOLUME RESPONSIVE PUMP. RESUSCITATION • HOWEVER THIS PUMP FAILS QUICKLY WITH VOLUME LOSS AND IT CAN BE FATAL WITH JUST 35 TO 40% LOSS OF BLOOD VOLUME. HEMORRHAGE AND DISTRIBUTION OF BODY FLUIDS HYPOVOLEMIA • TOTAL BODY FLUID ACCOUNTS FOR 60% OF LEAN BODY WT IN MALES AND 50% IN FEMALES. • BLOOD REPRESENTS ONLY 11-12 % OF TOTAL BODY FLUID. CLINICAL MANIFESTATIONS OF HYPOVOLEMIA • SUPINE TACHYCARDIA PR >100 BPM • SUPINE HYPOTENSION <95 MMHG • POSTURAL PULSE INCREMENT: INCREASE IN PR >30 BPM • POSTURAL HYPOTENSION: DECREASE IN SBP >20 MMHG • POSTURAL CHANGES ARE UNCOMMON WHEN BLOOD LOSS IS <630 ML. 1 11/7/2015 INFLUENCE OF ACUTE HEMORRHAGE AND FLUID RESUSCITATION ON BLOOD VOLUME AND HCT • COMPARED TO OTHERS, POSTURAL PULSE INCREMENT IS A SENSITIVE AND SPECIFIC MARKER OF ACUTE BLOOD LOSS. • CHANGES IN HEMATOCRIT SHOWS POOR CORRELATION WITH BLOOD VOL DEFICITS AS WITH ACUTE BLOOD LOSS THERE IS A PROPORTIONAL LOSS OF PLASMA AND ERYTHROCYTES. MARKERS FOR VOLUME CHEMICAL MARKERS OF RESUSCITATION HYPOVOLEMIA • CVP AND PCWP USED BUT EXPERIMENTAL STUDIES HAVE SHOWN A POOR CORRELATION BETWEEN CARDIAC FILLING PRESSURES AND VENTRICULAR EDV OR CIRCULATING BLOOD VOLUME. Classification System for Acute Blood Loss • MORTALITY RATE IN CRITICALLY ILL PATIENTS Class I: Loss of <15% Blood volume IS NOT ONLY RELATED TO THE INITIAL Compensated by transcapillary refill volume LACTATE LEVEL BUT ALSO THE RATE OF Resuscitation not necessary DECLINE IN LACTATE LEVELS AFTER THE TREATMENT IS INITIATED ( LACTATE CLEARANCE ). Class II: Loss of 15-30% blood volume Compensated by systemic vasoconstriction 2 11/7/2015 Classification System for Acute Blood FLUID CHALLENGES Loss Cont. -
Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Alexander Roederer University of Pennsylvania, [email protected]
University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 4-13-2015 Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Alexander Roederer University of Pennsylvania, [email protected] James Weimer University of Pennsylvania, [email protected] Joseph Dimartino University of Pennsylvania Health System, [email protected] Jacob Gutsche University of Pennsylvania Health System, [email protected] Insup Lee University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/cis_papers Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Alexander Roederer, James Weimer, Joseph Dimartino, Jacob Gutsche, and Insup Lee, "Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients", 6th Workshop on Medical Cyber-Physical Systems (MedicalCPS 2015) . April 2015. 6th Workshop on Medical Cyber-Physical Systems (MedicalCPS 2015) http://workshop.medcps.org/ in conjunction with CPS Week 2015 http://www.cpsweek.org/2015/ Seattle, WA, April 13, 2015 An extended version of this paper is available at http://repository.upenn.edu/cis_papers/787/ This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/781 For more information, please contact [email protected]. Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Abstract Hypovolemia caused by internal hemorrhage is a major cause of death in critical care patients. However, hypovolemia is difficult to diagnose in a timely fashion, as obvious symptoms do not manifest until patients are already nearing a critical state of shock. Novel non-invasive methods for detecting hypovolemia in the literature utilize the photoplethysmogram (PPG) waveform generated by the pulse-oximeter attached to a finger or ear. -
Diagnostic Approach to Palpitations Diagnostic Approach Pitations, Written by the Author of This Article, Is Provided on Page 755
Diagnostic Approach to Palpitations ALLAN V. ABBOTT, M.D., Keck School of Medicine of the University of Southern California, Los Angeles, California Palpitations—sensations of a rapid or irregular heartbeat—are most often caused by cardiac arrhythmias or anxiety. Most patients with arrhythmias do not complain of palpitations. However, any arrhythmia, including sinus tachycardia, atrial fibrillation, premature ventricular contractions, or ventricular tachycardia, can cause palpitations. Palpitations should be consid- ered as potentially more serious if they are associated with dizziness, near-syncope, or syncope. Nonarrhythmic cardiac problems, such as mitral valve prolapse, pericarditis, and congestive heart failure, and noncardiac problems, such as hyperthyroidism, vasovagal syncope, and hypo- glycemia, can cause palpitations. Palpitations also can result from stimulant drugs, and over-the- counter and prescription medications. No cause for the palpitations can be found in up to 16 percent of patients. Ambulatory electrocardiographic (ECG) monitoring usually is indicated if the etiology of palpitations cannot be determined from the patient’s history, physical examina- tion, and resting ECG. When palpitations occur unpredictably or do not occur daily, an initial two-week course of continuous closed-loop event recording is indicated. Holter monitoring for 24 to 48 hours may be appropriate in patients with daily palpitations. Trans-telephonic event monitors are more effective and cost-effective than Holter monitors for most patients. (Am Fam Physician 2005;743-50,755-6. Copyright© 2005 American Academy of Family Physicians.) ▲ Patient information: n increased or abnormal aware- at a university medical center who com- A handout on heart pal- ness of the heartbeat, palpita- plained of palpitations and were followed for pitations, written by the author of this article, is tions are a common symptom in one year, an etiology was determined in 84 provided on page 755.