Dimensions: a Competitor to Scopus and the Web of Science? Mike Thelwall, University of Wolverhampton, UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cast Commentary Producing Food Products from Cultured Animal …
CASTCommentary The Importance of Communicating Empirically Based Science for Society 1 CAST Commentary QTA2020-5 September 2020 The Importance of Communicating Empirically Based Science for Society Authors: Dr.StuartSmyth(Chair) JonEntineDr. Ruth MacDonald University of Saskatchewan Genetic Literacy Project Iowa State University Saskatoon, Saskatchewan Cincinnati, Ohio Ames,Iowa Dr. Cami Ryan Dr. Meghan Wulster-Radcliffe Bayer Crop Science American Society of Animal Science St. Louis, Missouri Champaign, Illinois Reviewers: Dr. Alexandra Grygorczyk Ms. Sarah Lukie Vineland Research and Innovation Centre CropLife International Vineland, Ontario Brussels, Belgium Caroline Rhodes, BAgSc, MAgBus Grain Producers, SA Adelaide, South Australia CAST Liaison: Dr. Gabe Middleton Orrville Vet Clinic Orrville, Ohio Introduction Societies around the world have received immeasurable gains from scientific innovations and humanity’s ability to communicate the changes in agriculture and food science over the past centuries. In 1651, Thomas Hobbes published Leviathan, describing life at the time as “poor, nasty, brutish and short”. It was a long time before things improved. At the beginning of the 20th century, global life expectancy ranged from the mid 30s to the high 40s (Kinsella 1992). Presently, the global average for life expectancy is in the low 70s, rising to almost 80 in some industrial countries (Roser, Ortiz-Ospina, and Ritchieet 2019). While multiple factors come into play for the increase in life expectancy, one of the key drivers of this trend is the role that science-based technological innovation has played in food security; not only in mechanistic advances in agriculture, but also in higher yielding crops and synthetic Photo illustration by Emily Turnbough and Allison Davitre, with photos from Shutterstock. -
Open Access Availability of Scientific Publications
Analytical Support for Bibliometrics Indicators Open access availability of scientific publications Analytical Support for Bibliometrics Indicators Open access availability of scientific publications* Final Report January 2018 By: Science-Metrix Inc. 1335 Mont-Royal E. ▪ Montréal ▪ Québec ▪ Canada ▪ H2J 1Y6 1.514.495.6505 ▪ 1.800.994.4761 [email protected] ▪ www.science-metrix.com *This work was funded by the National Science Foundation’s (NSF) National Center for Science and Engineering Statistics (NCSES). Any opinions, findings, conclusions or recommendations expressed in this report do not necessarily reflect the views of NCSES or the NSF. The analysis for this research was conducted by SRI International on behalf of NSF’s NCSES under contract number NSFDACS1063289. Analytical Support for Bibliometrics Indicators Open access availability of scientific publications Contents Contents .............................................................................................................................................................. i Tables ................................................................................................................................................................. ii Figures ................................................................................................................................................................ ii Abstract ............................................................................................................................................................ -
March 13, 2019 AMS Primer on Open Access
Robert M. Harington Associate Executive Director, Publishing Publishing Division [email protected] 401.455.4165 401.331.3842 www.ams.org AMS Primer on Open Access Introduction Open access (OA) refers to published scholarly content (such as journal research articles, and books) made openly available in online digital form. This content is free of charge at point of use, free of most copyright and licensing restrictions, and free of technical or other barriers to access (such as digital rights management or requirements to register to access). Communicating and sharing discoveries is an essential part of the research process. Any author of a research paper wants it to be read, and the fewer restrictions placed on access to those papers means that more people may benefit from the research. In many ways, the OA movement is very much in line with the shared mission of researchers, scholarly societies, and publishers. Journal publishing programs perform many services for researchers including peer review, communication, and career advancement. In society publishing programs, revenue from journal publishing directly supports the important work societies do on behalf of their scholarly communities. How do we maximize the dissemination of knowledge while at the same time maintaining both a high level of quality and a sustainable financial future for our professional society, the AMS? The OA movement can be traced to a letter from the year 2000, signed by around 34,000 researchers, demanding publishers make all content free after 6 months. The signatories of the letter said they would boycott any journals refusing to comply. In 2002, the accepted definition of OA was encapsulated in the Budapest Open Access Initiative declaration. -
[3 TD$DIFF]Interdisciplinary Team Science in Cell Biology
TICB 1268 No. of Pages 3 Scientific Life Cell biology, beginning largely as micro- detailed physical–chemical mechanisms Interdisciplinary[3_TD$IF] scopic observations, followed[1_TD$IF]the molec- [7]. The data required for these models ular biology revolution, which viewed are now in sight. New gene editing meth- Team Science in genes, cells, and the machinery that ods are providing endogenous expression underlies their activities as molecular sys- of tagged and mutant cells [8], and new Cell Biology tems that could be fully characterized and live-cell imaging methods are promising Rick Horwitz1,* understood using methods of genetics biochemistry in living cells, measuring con- and biochemistry. Viewing the cell as a centrations, dynamics, equilibria, and complex, dynamic molecular composite organization [9]. Similarly, super-resolution The cell is complex. With its multi- brought insights from chemistry and phys- microscopy and cryoEM tomography, tude of components, spatial– ics to bear on biological problems. Just as which allow structure determination and [6_TD$IF] temporal character, and gene the molecular genetic era was codified by organization in situ [3,4], imaging mass expression diversity, it is challeng- the publication of Watson's book, Molec- spectrometry [10], and single-cell and ing to comprehend the cell as an ular Biology of the Gene [1], two decades spatially-resolved genomic approaches integrated system and to develop later[8_TD$IF]the Molecular Biology of the Cell by [11–13], among other image-based tech- models that predict its behaviors. I Alberts, et al. [2] served a similar purpose nologies, all point to a new golden era of suggest an approach to address for cell biology. -
Genomic Divergence and Brain Evolution: How Regulatory DNA Influences Development of the Cerebral Cortex
Prospects & Overviews Review essays Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex Debra L. Silver1)2)3)4) The cerebral cortex controls our most distinguishing higher Introduction cognitive functions. Human-specific gene expression dif- ferences are abundant in the cerebral cortex, yet we have A large six-layered neocortex is a unique feature of only begun to understand how these variations impact brain mammalian brains. This specialized outer covering of the brain controls our higher cognitive functions including function. This review discusses the current evidence linking abstract thought and language, which together help uniquely non-coding regulatory DNA changes, including enhancers, define us as humans. Our distinguishing cognitive capacities with neocortical evolution. Functional interrogation using are specified within discrete cortical areas and are driven by animal models reveals converging roles for our genome in dynamic communication between neurons of the neocortex key aspects of cortical development including progenitor and other brain regions, as well as glial cell populations (including oligodendrocytes, microglia, and astrocytes). cell cycle and neuronal signaling. New technologies, Neurons are initially generated during human embryonic includingiPS cells and organoids, offerpotential alternatives and early fetal development, where they migrate to appropri- to modeling evolutionary modifications in a relevant species ate regions and begin establishing functional connections context. Several diseases rooted in the cerebral cortex during fetal and postnatal stages (Fig. 1). Disruptions to uniquely manifest in humans compared to other primates, cerebral cortex function arising during either development or thus highlighting the importance of understanding human adulthood, can result in neurodevelopmental and neurode- generative disorders. -
MOLECULAR CLOCKS Definition Introduction
MOLECULAR CLOCKS 583 Kishino, H., Thorne, J. L., and Bruno, W. J., 2001. Performance of Thorne, J. L., Kishino, H., and Painter, I. S., 1998. Estimating the a divergence time estimation method under a probabilistic model rate of evolution of the rate of molecular evolution. Molecular of rate evolution. Molecular Biology and Evolution, 18,352–361. Biology and Evolution, 15, 1647–1657. Kodandaramaiah, U., 2011. Tectonic calibrations in molecular dat- Warnock, R. C. M., Yang, Z., Donoghue, P. C. J., 2012. Exploring ing. Current Zoology, 57,116–124. uncertainty in the calibration of the molecular clock. Biology Marshall, C. R., 1997. Confidence intervals on stratigraphic ranges Letters, 8, 156–159. with nonrandom distributions of fossil horizons. Paleobiology, Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., 23, 165–173. and Tavaré, S., 2011. Dating primate divergences through an Müller, J., and Reisz, R. R., 2005. Four well-constrained calibration integrated analysis of palaeontological and molecular data. Sys- points from the vertebrate fossil record for molecular clock esti- tematic Biology, 60,16–31. mates. Bioessays, 27, 1069–1075. Yang, Z., and Rannala, B., 2006. Bayesian estimation of species Parham, J. F., Donoghue, P. C. J., Bell, C. J., et al., 2012. Best practices divergence times under a molecular clock using multiple fossil for justifying fossil calibrations. Systematic Biology, 61,346–359. calibrations with soft bounds. Molecular Biology and Evolution, Peters, S. E., 2005. Geologic constraints on the macroevolutionary 23, 212–226. history of marine animals. Proceedings of the National Academy Zuckerkandl, E., and Pauling, L., 1962. Molecular disease, evolution of Sciences, 102, 12326–12331. -
EUROPEAN JOURNAL of AGRONOMY the Official Journal of the European Society for Agronomy
EUROPEAN JOURNAL OF AGRONOMY The Official Journal of the European Society for Agronomy AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 1161-0301 DESCRIPTION . The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy. Confirmatory research and results routine cultivar or agronomy trials in which there are no identified biological processes will not normally be considered for publication. Modelling studies have to be informative and innovative and used to illustrate important generic issues facing agronomy. Studies in which a model is only tested against observed data for its goodness-of-fit are not generally welcome. Field experiments need to be either multi-locational or multi-year and normally three at least and be accompanied by appropriate statistical analysis. -
Biology & Biochemistry
Top Peer Reviewed Journals – Biology & Biochemistry Presented to Iowa State University Presented by Thomson Reuters Biology & Biochemistry The subject discipline for Biology & Biochemistry is made of 14 narrow subject categories from the Web of Science. The 14 categories that make up Biology & Biochemistry are: 1. Anatomy & Morphology 8. Cytology & Histology 2. Biochemical Research Methods 9. Endocrinology & Metabolism 3. Biochemistry & Molecular Biology 10. Evolutionary Biology 4. Biology 11. Medicine, Miscellaneous 5. Biology, Miscellaneous 12. Microscopy 6. Biophysics 13. Parasitology 7. Biotechnology & Applied Microbiology 14. Physiology The chart below provides an ordered view of the top peer reviewed journals within the 1st quartile for Biology & Biochemistry based on Impact Factors (IF), three year averages and their quartile ranking. Journal 2009 IF 2010 IF 2011 IF Average IF ANNUAL REVIEW OF BIOCHEMISTRY 29.87 29.74 34.31 31.31 PHYSIOLOGICAL REVIEWS 37.72 28.41 26.86 31.00 NATURE BIOTECHNOLOGY 29.49 31.09 23.26 27.95 CANCER CELL 25.28 26.92 26.56 26.25 ENDOCRINE REVIEWS 19.76 22.46 19.92 20.71 NATURE METHODS 16.87 20.72 19.27 18.95 ANNUAL REVIEW OF BIOPHYSICS AND 18.95 18.95 BIOMOLECULAR STRUCTURE ANNUAL REVIEW OF PHYSIOLOGY 18.17 16.1 20.82 18.36 Annual Review of Biophysics 19.3 17.52 13.57 16.80 Nature Chemical Biology 16.05 15.8 14.69 15.51 NATURE STRUCTURAL & MOLECULAR 12.27 13.68 12.71 12.89 BIOLOGY PLOS BIOLOGY 12.91 12.47 11.45 12.28 TRENDS IN BIOCHEMICAL SCIENCES 11.57 10.36 10.84 10.92 QUARTERLY REVIEWS OF BIOPHYSICS -
Conceptual Breakthroughs in Developmental Biology
Swarthmore College Works Biology Faculty Works Biology 9-1-1998 Conceptual Breakthroughs In Developmental Biology Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation Scott F. Gilbert. (1998). "Conceptual Breakthroughs In Developmental Biology". Journal Of Biosciences. Volume 23, Issue 3. 169-176. DOI: 10.1007/BF02720017 https://works.swarthmore.edu/fac-biology/189 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. SCOTT F GILBERT Department of Biology, Martin Laboratories of Biology, Swarthmore College, Swarthmore, PA 19081, USA (Fax, +610-328-8663; Email, [email protected]) I 1. Developmental biologists can indeed explain Introduction development Revising a textbook is a fascinating exercise that allows Fifteen years ago, embryology was what could be char- one to see quite starkly the changes that have occurred acterized as the only field of science that celebrated its in one's discipline through the subsequent editions. As questions more than its answers. We had the greatest I revise a textbook that was originally published in 1985, problems one could imagine: How does the brain develop? I can see the numerous advances that have transformed How do the eyes form? How does our back develop the discipline of developmental biology. But even more differently than our front? How are the arteries and veins important and much rarer than the advances are the true connected to the heart? But we had very few answers. -
Journal List Emerging Sources Citation Index (Web of Science) 2020
JOURNAL TITLE ISSN eISSN PUBSLISHER NAME PUBLISHER ADDRESS 3C EMPRESA 2254‐3376 2254‐3376 AREA INNOVACION & DESARROLLO C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, SPAIN, 03802 3C TECNOLOGIA 2254‐4143 2254‐4143 3CIENCIAS C/ SANTA ROSA 15, ALCOY, SPAIN, 03802 3C TIC 2254‐6529 2254‐6529 AREA INNOVACION & DESARROLLO C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, SPAIN, 03802 3D RESEARCH 2092‐6731 2092‐6731 SPRINGER HEIDELBERG TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D‐69121 3L‐LANGUAGE LINGUISTICS LITERATURE‐THE SOUTHEAST ASIAN JOURNAL OF ENGLISH LANGUAGE STUDIES 0128‐5157 2550‐2247 PENERBIT UNIV KEBANGSAAN MALAYSIA PENERBIT UNIV KEBANGSAAN MALAYSIA, FAC ECONOMICS & MANAGEMENT, BANGI, MALAYSIA, SELANGOR, 43600 452 F‐REVISTA DE TEORIA DE LA LITERATURA Y LITERATURA COMPARADA 2013‐3294 UNIV BARCELONA, FACULTAD FILOLOGIA GRAN VIA DE LES CORTS CATALANES, 585, BARCELONA, SPAIN, 08007 AACA DIGITAL 1988‐5180 1988‐5180 ASOC ARAGONESA CRITICOS ARTE ASOC ARAGONESA CRITICOS ARTE, HUESCA, SPAIN, 00000 AACN ADVANCED CRITICAL CARE 1559‐7768 1559‐7776 AMER ASSOC CRITICAL CARE NURSES 101 COLUMBIA, ALISO VIEJO, USA, CA, 92656 A & A PRACTICE 2325‐7237 2325‐7237 LIPPINCOTT WILLIAMS & WILKINS TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, USA, PA, 19103 ABAKOS 2316‐9451 2316‐9451 PONTIFICIA UNIV CATOLICA MINAS GERAIS DEPT CIENCIAS BIOLOGICAS, AV DOM JOSE GASPAR 500, CORACAO EUCARISTICO, CEP: 30.535‐610, BELO HORIZONTE, BRAZIL, MG, 00000 ABANICO VETERINARIO 2007‐4204 2007‐4204 SERGIO MARTINEZ GONZALEZ TEZONTLE 171 PEDREGAL SAN JUAN, TEPIC NAYARIT, MEXICO, C P 63164 ABCD‐ARQUIVOS -
Editors' Handbook
Editors’ Handbook Editors’ Handbook 2007 Updated 2017 American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. 5585 Guilford Rd., Madison, WI 53711 www.agronomy.org www.crops.org www.soils.org Contents Chapter 1. Editorial Responsibilities Editors-in-Chief Editors Technical Editors (Co-Editors) Associate Editors Managing Editors Accepting or Rejecting a Paper Editorial Misconduct Record Retention Stipend Policy Chapter 2. The Review–Editing Process Before the Review Begins Reviewers Types of Papers Reviewed The Review Checklist for Detailed Comments Chapter 3. Journal Histories, Management, and Editorial Procedures General Procedures Appeals Agronomy Journal Crop Science Soil Science Society of America Journal Agricultural & Environmental Letters Agrosystems, Geosciences & Environment Crop, Forage & Turfgrass Management iii Journal of Environmental Quality Journal of Plant Registrations Natural Sciences Education The Plant Genome The Plant Phenome Journal Urban Agriculture & Regional Food Systems Vadose Zone Journal Chapter 4. ASA, CSSA, and SSSA Books Development and Production of New Publications Series iv Chapter 1 Editorial Responsibilities he editing of all scientific papers published by ASA, CSSA, and SSSA is a Ttwo-step process. First, the journal editor together with other members of the editorial board, usually technical editors (referred to as co-editors in Vadose Zone Journal) and associate editors, determine whether a scientific paper represents a significant addition to the literature. If so, one or more of those editors work with the author to make certain the paper is complete and scientifically accurate. After one of the editors (journal, technical, or associate depending on the journal) accepts a paper for publication, managing editors employed by ASA, CSSA, and SSSA oversee copyediting and typesetting of the paper to ensure its adherence to ASA, CSSA, SSSA and other recognized rules regarding style, grammar, and quality and consistency of presentation. -
Microbiota Interactions: a Need for New Types of Studies
CAUSE TO REFLECT Thoughts & Opinion www.bioessays-journal.com Advancing Our Functional Understanding of Host–Microbiota Interactions: A Need for New Types of Studies Jinru He, Janina Lange, Georgios Marinos, Jay Bathia, Danielle Harris, Ryszard Soluch, Vaibhvi Vaibhvi, Peter Deines, M. Amine Hassani, Kim-Sara Wagner, Roman Zapien-Campos, Cornelia Jaspers, and Felix Sommer* 1. Introduction all associated archaea, bacteria, fungi, and viruses. These associ- ations greatly affect the health and life history of the host, which Multicellular life evolved in the presence of microorganisms and led to a new understanding of “self” and establishment of the formed complex associations with their microbiota, the sum of “metaorganism” concept.[1] The Collaborative Research Centre (CRC) 1182 aims at elucidating the evolution and function of metaorganisms. Its annual conference, the Young Investigator J. He, J. Lange, J. Bathia, D. Harris, V. Vaibhvi, Dr. P. Deines Zoological Institute Research Day (YIRD), serves as a platform for scientists of vari- University of Kiel ous disciplines to share novel findings on host–microbiota inter- Kiel 24118, Germany actions, thereby providing a comprehensive overview of recent G. Marinos developments and new directions in metaorganism research. Institute of Experimental Medicine Even though we have gained tremendous insights into the com- University of Kiel position and dynamics of host-associated microbial communi- Kiel 24105, Germany ties and their correlations with host health and disease, it also R. Soluch Institute for General Microbiology became evident that moving from correlative toward functional University of Kiel studies is needed to examine the underlying mechanisms of in- Kiel 24118, Germany teractions within the metaorganism.