Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition

Total Page:16

File Type:pdf, Size:1020Kb

Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition Published OnlineFirst December 19, 2013; DOI: 10.1158/1535-7163.MCT-13-0749 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition Melanie L. Bailey1, Nigel J. O'Neil1, Derek M. van Pel2, David A. Solomon3, Todd Waldman4, and Philip Hieter1 Abstract Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a wild-type STAG2 allele restored by homologous recombination. We find that mutations in STAG2 are associated with significantly increased sensitivity to inhibitors of the DNA repair enzyme PARP. STAG2-mutated, PARP-inhibited cells accumulated in G2 phase and had a higher percentage of micronuclei, fragmented nuclei, and chromatin bridges compared with wild-type STAG2 cells. We also observed more 53BP1 foci in STAG2-mutated glioblastoma cells, suggesting that these cells have defects in DNA repair. Furthermore, cells with mutations in STAG2 were more sensitive than cells with wild-type STAG2 when PARP inhibitors were used in combination with DNA-damaging agents. These data suggest that PARP is a potential target for tumors harboring inactivating mutations in STAG2, and strongly recommend that STAG2 status be determined and correlated with therapeutic response to PARP inhibitors, both prospectively and retrospectively, in clinical trials. Mol Cancer Ther; 13(3); 724–32. Ó2013 AACR. Introduction or MCD1), and one of two possible stromal antigen Inhibition of PARP has emerged as a promising drug proteins (STAG1 or STAG2). Together, these four sub- strategy for the treatment of cancers mutated for BRCA1/2 units can encompass newly replicated sister chromatids because of its ability to selectively kill cells through syn- and hold them in close proximity (8). Beyond its well- thetic lethality (1, 2). More recently, PARP inhibitors have known function in chromosome segregation, cohesin been shown to be effective in cells with defects in other has several additional roles in the cell. Similar to other genes involved in homologous recombination and the genes sensitive to PARP inhibition, defects in cohesin DNA damage response suggesting that PARP inhibitors components affect both replication fork integrity and may be effective in treating a wider range of tumors that homologous recombination repair (7, 9, 10). Cohesin is do not have BRCA mutations (3–6). Identification of other recruited to sites of replication fork pausing and double- tumor genotypes susceptible to PARP inhibition will strand breaks (DSB) and has also been shown to pro- expand the utility of these drugs. mote replication fork restart and DNA repair through The cohesin complex, named for its role in sister its interactions with other proteins (11–13). In addition, chromatid cohesion, is well conserved across organisms because of its ability to encircle sister chromatids, the (7). In humans, the core mitotic complex consists of four cohesin complex is thought to promote error-free subunits:SMC1A,SMC3,RAD21(alsoknownasSCC1 recombination repair with the neighboring undamaged DNA strand in the S–G2 phases of the cell cycle (10). Supporting the idea that cells mutated for cohesin genes might be sensitive to PARP inhibition, we have shown Authors' Affiliations: 1Michael Smith Laboratories, University of British Columbia; 2The Centre for Drug Research and Development, Vancouver, that knockdown of three of the cohesin core components British Columbia, Canada; 3Department of Pathology, University of Cali- (SMC1, SMC3, and RAD21) can render cells sensitive to fornia San Francisco, San Francisco, California; and 4Department of the PARP inhibitor olaparib (14). Oncology, Lombardi Comprehensive Cancer Center, Georgetown Univer- STAG2 sity School of Medicine, Washington, DC Recently, the cohesin gene, , was discovered to be highly mutated in glioblastoma, Ewing sarcoma, Corresponding Author: Philip Hieter, Michael Smith Laboratories, 2185 East Mall, Room 323, University of British Columbia, Vancouver, British and melanoma cells (15). These mutations led to either Columbia, Canada V6T1Z4. Phone: 604-822-5115; Fax: 604-822-2114; truncation or functional inactivation of the STAG2 E-mail: [email protected] protein that is easily detected in cells or tissues by Note: Supplementary data for this article are available at Molecular Cancer immunohistochemistry or Western blot analysis using Therapeutics Online (http://mct.aacrjournals.org/). antibodies. Given the previous data that knockdown of doi: 10.1158/1535-7163.MCT-13-0749 cohesin components results in PARP inhibitor sensitiv- Ó2013 American Association for Cancer Research. ity (14), we wanted to determine if tumor cells with 724 Mol Cancer Ther; 13(3) March 2014 Downloaded from mct.aacrjournals.org on November 6, 2015. © 2014 American Association for Cancer Research. Published OnlineFirst December 19, 2013; DOI: 10.1158/1535-7163.MCT-13-0749 STAG2 Mutation and PARP Inhibition in Glioblastoma Cells STAG2 mutations were susceptible to PARP inhibition. inhibitors (Roche). Cells were lysed by sonication and Here, we show that glioblastoma cell lines with muta- centrifuged to remove debris. Lysates were separated by tions in STAG2 are significantly more sensitive to PARP SDS–PAGE, transferred to polyvinylidene difluoride, and inhibitors than matched, isogenic STAG2 wild-type blotted with the indicated antibodies. lines. This proliferation defect results in an accumula- For flow cytometry, cells were grown and harvested as tion of cells in G2 phase and genome instability. Fur- above, before being fixed in cold 70% ethanol. Where thermore, STAG2-mutated cell lines demonstrate an indicated, cells were first stained with pH3 antibody increased sensitivity when combinations of DNA-dam- followed by anti-rabbit conjugated to Alexa Fluor 488 aging chemotherapeutics and PARP inhibitors are used, (Jackson Immunoresearch), before being incubated with providing a therapeutic rationale for PARP inhibitors propidium iodide and RNase A. Cell-cycle analysis was either as a single agent, or in combination with other done using FlowJo. Cell lines were compared using a one- DNA-damaging agents, in STAG2-deficient tumors. tailed, matched Student t test. Error bars represent SEM. Materials and Methods Immunofluorescence Materials and cell culture Cells were grown on coverslips with and without PARP Olaparib (AZD2281), veliparib (ABT-888), and ruca- inhibitor for 3 (H4) or 4 (42MGBA) days before fixation in parib (AG014699) were purchased from Selleck Chemicals; 1:1 methanol:acetone and permeabilization in 0.1% Triton temozolomide and camptothecin were purchased from X-100. Coverslips were incubated with anti-53BP1 and anti-rabbit conjugated to Cy3 (Jackson Immunoresearch) Sigma-Aldrich. Antibodies used were anti-PAR (Trevi- 0 gen), anti-STAG2 (Santa Cruz Biotechnology), anti-SMC1, before being stained with 4 ,6-diamidino-2-phenylindole anti-SMC3, anti-pS10 Histone H3 (pH3), anti-53BP1anti- (DAPI) and viewed on a Zeiss Axioplan 2 Fluorescence GAPD, and anti-a-tubulin (all from Abcam). H4 and microscope. At least 200 cells were counted for each 42MGBA parental and STAG2 knock-in (KI) cell lines have experiment. For micronuclei, fragmented nuclei, and chromatin bridges, cell lines were compared using a been described previously (15). H4 and 42MGBA cell lines t obtained from Solomon and colleagues were from the one-tailed, matched Student test. For 53BP1 foci, cell American Type Culture Collection and DSMZ, respective- lines were compared using a Fisher exact test. ly, and were cultured in Dulbecco’s Modified Eagle Medi- Results um (DMEM) þ 10% FBS at 37 C and 5% CO for 1 to 2 2 STAG2 months at a time before reinitiation from early passage, -mutated glioblastoma cell lines are sensitive frozen stocks. Cell lines were checked regularly for the to PARP inhibition STAG2 presence or absence of STAG2 by Western blot analysis To determine whether mutation causes PARP (Supplementary Fig. S1). inhibitor sensitivity, we used two paired sets of glio- blastoma cell lines described by Solomon and collea- Cell counting experiments and clonogenic assays gues(15):H4(whichhasa25-bpinsertioninexon12of To assess cell number by nuclei counting, cells were STAG2) and 42MGBA (which has a nonsense mutation plated in a 96-well format with 6 technical replicates for in exon 20 of STAG2),whichwereeachmatchedwith each drug concentration. Twenty-four hours after plating, STAG2 KI lines that have these mutations corrected via inhibitors or dimethyl sulfoxide (DMSO) were diluted HR (H4 STAG2 KI and 42MGBA STAG2 KI, respective- into DMEM and added to wells. Cells were fixed in 3.7% ly). Using these two independent isogenic cell line pairs, paraformaldehyde after 4 to 5 days and then stained with we first looked at the proliferation of the H4 and Hoechst 33342 before nuclei were counted on a Cellomics 42MGBA cell lines in the presence of the PARP inhib- Arrayscan VTI. itor, olaparib, and found that over a range of concen- For clonogenic assays, cells were plated at single-cell trations, both the H4 and 42MGBA STAG2-mutated cell density in 6-well dishes with three replicates per drug lines showed significantly decreased cell number when concentration.
Recommended publications
  • Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer
    REPORTS mean difference for all rubric score elements was ing becomes a more commonly supported facet 18. C. L. Townsend, E. Heit, Mem. Cognit. 39, 204 (2011). rejected. Univariate statistical tests of the observed of STEM graduate education then students’ in- 19. D. F. Feldon, M. Maher, B. Timmerman, Science 329, 282 (2010). mean differences between the teaching-and- structional training and experiences would alle- 20. B. Timmerman et al., Assess. Eval. High. Educ. 36,509 research and research-only conditions indicated viate persistent concerns that current programs (2011). significant results for the rubric score elements underprepare future STEM faculty to perform 21. No outcome differences were detected as a function of “testability of hypotheses” [mean difference = their teaching responsibilities (28, 29). the type of teaching experience (TA or GK-12) within the P sample population participating in both research and 0.272, = 0.006; CI = (.106, 0.526)] with the null teaching. hypothesis rejected in 99.3% of generated data References and Notes 22. Materials and methods are available as supporting samples (Fig. 1) and “research/experimental de- 1. W. A. Anderson et al., Science 331, 152 (2011). material on Science Online. ” P 2. J. A. Bianchini, D. J. Whitney, T. D. Breton, B. A. Hilton-Brown, 23. R. L. Johnson, J. Penny, B. Gordon, Appl. Meas. Educ. 13, sign [mean difference = 0.317, = 0.002; CI = Sci. Educ. 86, 42 (2001). (.106, 0.522)] with the null hypothesis rejected in 121 (2000). 3. C. E. Brawner, R. M. Felder, R. Allen, R. Brent, 24. R. J. A. Little, J.
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • Redundant and Specific Roles of Cohesin STAG Subunits in Chromatin Looping and Transcriptional Control
    Downloaded from genome.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press Research Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control Valentina Casa,1,6 Macarena Moronta Gines,1,6 Eduardo Gade Gusmao,2,3,6 Johan A. Slotman,4 Anne Zirkel,2 Natasa Josipovic,2,3 Edwin Oole,5 Wilfred F.J. van IJcken,1,5 Adriaan B. Houtsmuller,4 Argyris Papantonis,2,3 and Kerstin S. Wendt1 1Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 2Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; 3Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany; 4Optical Imaging Centre, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 5Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG sub- units, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy in- dividual binding sites and have distinct ways by which they affect looping and gene expression.
    [Show full text]
  • A Requirement for STAG2 in Replication Fork Progression Creates a Targetable Synthetic Lethality in Cohesin-Mutant Cancers
    ARTICLE https://doi.org/10.1038/s41467-019-09659-z OPEN A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers Gourish Mondal1, Meredith Stevers1, Benjamin Goode 1, Alan Ashworth2,3 & David A. Solomon 1,2 Cohesin is a multiprotein ring that is responsible for cohesion of sister chromatids and formation of DNA loops to regulate gene expression. Genomic analyses have identified that 1234567890():,; the cohesin subunit STAG2 is frequently inactivated by mutations in cancer. However, the reason STAG2 mutations are selected during tumorigenesis and strategies for therapeutically targeting mutant cancer cells are largely unknown. Here we show that STAG2 is essential for DNA replication fork progression, whereby STAG2 inactivation in non-transformed cells leads to replication fork stalling and collapse with disruption of interaction between the cohesin ring and the replication machinery as well as failure to establish SMC3 acetylation. As a con- sequence, STAG2 mutation confers synthetic lethality with DNA double-strand break repair genes and increased sensitivity to select cytotoxic chemotherapeutic agents and PARP or ATR inhibitors. These studies identify a critical role for STAG2 in replication fork procession and elucidate a potential therapeutic strategy for cohesin-mutant cancers. 1 Department of Pathology, University of California, San Francisco, CA 94143, USA. 2 UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA. 3 Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA. Correspondence and requests for materials should be addressed to D.A.S. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1686 | https://doi.org/10.1038/s41467-019-09659-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09659-z ohesin is a multi-protein complex composed of four core transcriptional dysregulation22,23.
    [Show full text]
  • Loss of Cohesin Complex Components STAG2 Or STAG3 Confers Resistance to BRAF Inhibition in Melanoma
    Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Shen, C., S. H. Kim, S. Trousil, D. T. Frederick, A. Piris, P. Yuan, L. Cai, et al. 2016. “Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma.” Nature medicine 22 (9): 1056-1061. doi:10.1038/nm.4155. http:// dx.doi.org/10.1038/nm.4155. Published Version doi:10.1038/nm.4155 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:31731818 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 March 01. Published in final edited form as: Nat Med. 2016 September ; 22(9): 1056–1061. doi:10.1038/nm.4155. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma Che-Hung Shen1, Sun Hye Kim1, Sebastian Trousil1, Dennie T. Frederick2, Adriano Piris3, Ping Yuan1, Li Cai1, Lei Gu4, Man Li1, Jung Hyun Lee1, Devarati Mitra1, David E. Fisher1,2, Ryan J. Sullivan2, Keith T. Flaherty2, and Bin Zheng1,* 1Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 2Department of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 3Department of Dermatology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 4Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.
    [Show full text]
  • Low Tolerance for Transcriptional Variation at Cohesin Genes Is Accompanied by Functional Links to Disease-Relevant Pathways
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037358; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways Authors William Schierdingǂ1, Julia Horsfieldǂ2,3, Justin O’Sullivan1,3,4 ǂTo whom correspondence should be addressed. 1 Liggins Institute, The University of Auckland, Auckland, New Zealand 2 Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand 3 The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand 4 MRC Lifecourse Epidemiology Unit, University of Southampton Acknowledgements This work was supported by a Royal Society of New Zealand Marsden Grant to JH and JOS (16-UOO- 072), and WS was supported by the same grant. Contributions WS planned the study, performed analyses, and drafted the manuscript. JH and JOS revised the manuscript. Competing interests None declared. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037358; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Variants in DNA regulatory elements can alter the regulation of distant genes through spatial- regulatory connections.
    [Show full text]
  • Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition
    Published OnlineFirst December 19, 2013; DOI: 10.1158/1535-7163.MCT-13-0749 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition Melanie L. Bailey1, Nigel J. O'Neil1, Derek M. van Pel2, David A. Solomon3, Todd Waldman4, and Philip Hieter1 Abstract Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a wild-type STAG2 allele restored by homologous recombination. We find that mutations in STAG2 are associated with significantly increased sensitivity to inhibitors of the DNA repair enzyme PARP. STAG2-mutated, PARP-inhibited cells accumulated in G2 phase and had a higher percentage of micronuclei, fragmented nuclei, and chromatin bridges compared with wild-type STAG2 cells. We also observed more 53BP1 foci in STAG2-mutated glioblastoma cells, suggesting that these cells have defects in DNA repair. Furthermore, cells with mutations in STAG2 were more sensitive than cells with wild-type STAG2 when PARP inhibitors were used in combination with DNA-damaging agents. These data suggest that PARP is a potential target for tumors harboring inactivating mutations in STAG2, and strongly recommend that STAG2 status be determined and correlated with therapeutic response to PARP inhibitors, both prospectively and retrospectively, in clinical trials. Mol Cancer Ther; 13(3); 724–32.
    [Show full text]
  • Nonsense Variants of STAG2 Result in Distinct Congenital Anomalies
    Aoi et al. Human Genome Variation (2020) 7:26 https://doi.org/10.1038/s41439-020-00114-w Human Genome Variation DATA REPORT Open Access Nonsense variants of STAG2 result in distinct congenital anomalies Hiromi Aoi 1,2,MingLei1, Takeshi Mizuguchi1, Nobuko Nishioka3, Tomohide Goto4,SahokoMiyama5, Toshifumi Suzuki2,KazuhiroIwama1,YuriUchiyama1, Satomi Mitsuhashi1,AtsuoItakura2,SatoruTakeda2 and Naomichi Matsumoto1 Abstract Herein, we report two female cases with novel nonsense mutations of STAG2 at Xq25, encoding stromal antigen 2, a component of the cohesion complex. Exome analysis identified c.3097 C>T, p.(Arg1033*) in Case 1 (a fetus with multiple congenital anomalies) and c.2229 G>A, p.(Trp743*) in Case 2 (a 7-year-old girl with white matter hypoplasia and cleft palate). X inactivation was highly skewed in both cases. Introduction Recently, STAG2 was added to the list of genes Cohesin is a multisubunit protein complex consisting of mutated in cohesinopathies5,6. As STAG2 is essential for four core proteins: structural maintenance of chromo- DNA replication fork progression, STAG2 defects may some 1 (SMC1), structural maintenance of chromosome 3 result in replication fork stalling and collapse with dis- (SMC3), RAD21 cohesin complex component (RAD21), ruption of the interaction between the cohesin ring and 1 7 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; and stromal antigen (STAG) . The cohesion subunit the replication machinery as previously described .To STAG1, STAG2, or STAG3 can directly attach to a tri- date, 16 pathogenic variants of STAG2 have been partite ring (comprising SMC1, SMC3, and RAD21) to reported, including seven nonsense, four missense, one – entrap chromatids1. Other interacting proteins, such as splicing, and four frameshift variants5,8 13.Notably, the cohesin loader NIPBL, also regulate the biological seven male patients in three families harbored missense functions of cohesion1.
    [Show full text]
  • Redundant and Specific Roles of Cohesin STAG Subunits in Chromatin Looping and Transcriptional Control
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control Valentina Casa1#, Macarena Moronta Gines1#, Eduardo Gade Gusmao2,3#, Johan A. Slotman4, Anne Zirkel2, Natasa Josipovic2,3, Edwin Oole5, Wilfred F.J. van IJcken5, Adriaan B. Houtsmuller4, Argyris Papantonis2,3,* and Kerstin S. Wendt1,* 1Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands 2Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany 3Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany 4Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands 5Center for Biomics, Erasmus MC, Rotterdam, The Netherlands *Corresponding authors #Authors contributed equally Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2- cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression.
    [Show full text]
  • Identification and Molecular Characterization of the Mammalian Α-Kleisin RAD21L
    Identification and molecular characterization of the mammalian α-kleisin RAD21L Cristina Gutiérrez-Caballero,1# Yurema Herrán,1# Manuel Sánchez-Martín,2 José Ángel Suja,3 José Luis Barbero,4 Elena Llano1,5* and Alberto M. Pendás1* 1Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno S/N, 37007 Salamanca, Spain. 2Departamento de Medicina, Campus Miguel de Unamuno S/N, 37007 Salamanca, Spain. 3Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain. 4Departamento de Proliferación Celular y Desarrollo., Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain. 5Departamento de Fisiología, Campus Miguel de Unamuno S/N, 37007 Salamanca, Spain. #These authors contributed equally *Corresponding authors: Alberto M. Pendás Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain. E-MAIL: [email protected] Tel. 34-923 294809; Fax: 34-923 294743 Or Elena Llano Departamento de Fisología, Universidad de Salamanca Campus Miguel de Unamuno, 37007 Salamanca, Spain. E-MAIL: [email protected] Tel. 34-923 294809; Fax: 34-923 294743 Running title: Molecular characterization of mammalian RAD21L Key words: Cohesins, Kleisin, meiosis, mitosis, chromosome segregation, synaptonemal complex. Abbreviations: CC, cohesin complex; AE, axial element; LE, lateral element; IP, immunoprecipitation; SC, synaptonemal complex; ORF, open reading frame; WB, Western blot. 1 Abstract Meiosis is a fundamental process that generates new combinations between maternal and paternal genomes and haploid gametes from diploid progenitors. Many of the meiosis- specific events stem from the behavior of the cohesin complex (CC), a proteinaceous ring structure that entraps sister chromatids until the onset of anaphase.
    [Show full text]
  • Loss of Stag2 Cooperates with EWS-FLI1 to Transform Murine Mesenchymal Stem Cells Marc El Beaino1†, Jiayong Liu2†, Amanda R
    El Beaino et al. BMC Cancer (2020) 20:3 https://doi.org/10.1186/s12885-019-6465-8 RESEARCH ARTICLE Open Access Loss of Stag2 cooperates with EWS-FLI1 to transform murine Mesenchymal stem cells Marc El Beaino1†, Jiayong Liu2†, Amanda R. Wasylishen3, Rasoul Pourebrahim4, Agata Migut1, Bryan J. Bessellieu1, Ke Huang1 and Patrick P. Lin1* Abstract Background: Ewing sarcoma is a malignancy of primitive cells, possibly of mesenchymal origin. It is probable that genetic perturbations other than EWS-FLI1 cooperate with it to produce the tumor. Sequencing studies identified STAG2 mutations in approximately 15% of cases in humans. In the present study, we hypothesize that loss of Stag2 cooperates with EWS-FLI1 in generating sarcomas derived from murine mesenchymal stem cells (MSCs). Methods: Mice bearing an inducible EWS-FLI1 transgene were crossed to p53−/− mice in pure C57/Bl6 background. MSCs were derived from the bone marrow of the mice. EWS-FLI1 induction and Stag2 knockdown were achieved in vitro by adenovirus-Cre and shRNA-bearing pGIPZ lentiviral infection, respectively. The cells were then treated with ionizing radiation to 10 Gy. Anchorage independent growth in vitro was assessed by soft agar assays. Cellular migration and invasion were evaluated by transwell assays. Cells were injected with Matrigel intramuscularly into C57/Bl6 mice to test for tumor formation. Results: Primary murine MSCs with the genotype EWS-FLI1 p53−/− were resistant to transformation and did not form tumors in syngeneic mice without irradiation. Stag2 inhibition increased the efficiency and speed of sarcoma formation significantly in irradiated EWS-FLI1 p53−/− MSCs. The efficiency of tumor formation was 91% for cells in mice injected with Stag2-repressed cells and 22% for mice receiving cells without Stag2 inhibition (p < .001).
    [Show full text]
  • Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.346122; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cohesin components Stag1 and Stag2 differentially influence haematopoietic mesoderm development in zebrafish embryos 1 Sarada Ketharnathan1,2, Anastasia Labudina1, Julia A. Horsfield1,3* 2 1University of Otago, Department of Pathology, Otago Medical School, Dunedin, New Zealand 3 2Current address: CHEO Research Institute, University of Ottawa, Ottawa, Canada 4 3The University of Auckland, Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 5 92019, Auckland, New Zealand 6 7 * Correspondence: 8 Julia Horsfield 9 [email protected] 10 Keywords: zebrafish, cohesin, haematopoiesis, mesoderm, development. 11 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.346122; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND Characterisation4.0 International license. of zebrafish Stag paralogues 12 Abstract 13 Cohesin is a multiprotein complex made up of core subunits Smc1, Smc3 and Rad21, and either 14 Stag1 or Stag2. Normal haematopoietic development relies on crucial functions of cohesin in cell 15 division and regulation of gene expression via three-dimensional chromatin organisation. Cohesin 16 subunit STAG2 is frequently mutated in myeloid malignancies, but the individual contributions of 17 Stag variants to haematopoiesis or malignancy are not fully understood.
    [Show full text]