Annotated Bibliography of the Literature on Resource Sharing Computer Networks NATIONAL BUREAU of STANDARDS

Total Page:16

File Type:pdf, Size:1020Kb

Annotated Bibliography of the Literature on Resource Sharing Computer Networks NATIONAL BUREAU of STANDARDS NBS SPECIAL PUBLICATION 384 Annotated Bibliography of the Literature on Resource Sharing Computer Networks NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: ( 1 ) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3 ) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences " — Applied Radiation ! — Quantum Electronics 3 — Electromagnetics 3 — Time 3 3 3 and Frequency — Laboratory Astrophysics — Cryogenics . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices: Engineering and Product Standards — Weights and Measures — Invention and Innova- tion — Product Evaluation Technology — Electronic Technology — Technical Analysis — Measurement Engineering — Structures, Materials, and Life Safety 4 — Building Environment 4 — Technical Evaluation and Application 4 — Fire Technology. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effec- tiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions: Information Processing Standards — Computer Information — Computer Services — Systems Development — Information Processing Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units: Office of Standard Reference Data — Office of Technical Information and Publications — Library — Office of International Relations. 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. a Part of the Center for Radiation Research. 3 Located at Boulder, Colorado 80302. * Part of the Center for Building Technology. Annotated Bibliography of the Literature on Resource Sharing Computer Networks R. P. Blanc, I. W. Cotton, T. N. Pyke, Jr., and S. W. Watkins Computer Systems Section Information Processing Technology Division Institute for Computer Sciences and Technology National Bureau of Standards Washington, D.C. 20234 ^fAU Of U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director Issued September 1973 Library of Congress Catalog Number: 73-600268 National Bureau of Standards Special Publication 384 Nat. Bur. Stand. (U.S.), Spec. Publ. 384,95 pages (Sept. 1973) CODEN: XNBSAV For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.10:384). Price $1.25 CONTENTS Page 1. INTRODUCTION 1 2. CLASSIFICATION SCHEME 4 3. ANNOTATED BIBLIOGRAPHY 10 4. AUTHOR INDEX 56 5. CORPORATE AUTHOR INDEX 61 6. NETWORK INDEX 67 7. KWOC INDEX 69 8. REPORT NUMBER INDEX 88 iii ACKNOWLEDGMENTS The authors acknowledge the extensive assistance pro- vided by members of the ICST Office of Computer Information in preparing this report. Under the guidance of Mr. M. S. Keplinger preparations for computer processing of the entire report leading to computer type setting of the end product were initiated and directed. Mrs. H. W. Hawes and Mr. C. L. Johnson provided substantial support in modifying the "CHA- OTIC" computer programs to produce the variety of indexes and the main listing in the desired format. Mrs. S. K. Sweeney, Mrs. J. Y. Jones and Mrs. B. D. Borke spent many hours inputting the bibliographic data and annotations onto magnetic tape. iv h Annotated Bibliography of the Literature on Resource Sharing Computer Networks * R. P. Blanc I . W . Cotton T. N. Pyke, Jr. S. W. Watkins This bibliography consists of re f e ren ces w i t critical annotations to the literature on computer networks. A classification scheme ha|s been developed to place each annotation iri acatego ry reflective of its content. Filve indexes to the bibliography are included: author index, corporate author index, network index, key word out of context index, and report number index. Key Words: Bibliography; computer network; data communications; resource sharing. 1 . INTRODUCTION A fully annotated bibliography on resource sharing computer networks has been prepared by the Computer Systems Section of the Institute for Computer Sciences and Technology. Its purpose is to serve as a working tool for the National Bureau of Standards and other efforts devoted to the plan- ning for the Networking for Science Program of the National Science Foundation. The operating objective has been to produce a continually updated and usable collection of documents together with a set of indexes and critical annotations. These can then be used to support the planning and development of the Networki ng for Science Program. * This work has been supported by the National Science Foundation under Grant AG-350. 1 In addition, it became clear as the bibliography was pre- pared that no coverage of similar scope and depth has been heretofore provided. Numerous requests for the completed bibliography have indicated a widespread need for it, and therefore, it has been produced in this readily available form as an NBS Special Publication. The bibliography covers computer networks consisting of independent computer systems which communicate with one another and share resources such as hardware, programs, or data and excludes, for example, articles on time-sharing and mult i -processing which deal specifically and exclusively with those topics. Ancillary topics are covered if they are sufficiently relevant. Errors of exclusion have been consid ered by the authors to be more serious than errors of inclu- sion. All articles which are clearly topical are included without regard to quality; one purpose of the annotations is to identify particularly worthwhile articles. Sources for inclusion in the bibliography have included all available related bibliographies, including those in Computing Reviews and those available through the ARPA Net- work Information Center. Complete coverage of the personal collections of individuals at NBS who have been working in the computer networking area for some time is also included. As papers and reports were made a part of this collection citations made within them were checked for potential addi- tional documents for the collection. In addition, recent 2 literature that may contain appropriate papers has been and is continually being searched. No documents of a classified nature are included; however, some reports that may be rather difficult to obtain but are formal reports of recog- nized organizations are included. No document is referenced in this bibliography unless it has actually been obtained for the collection at NBS. These documents are not, however, available from NBS except
Recommended publications
  • A Comparison of Mechanisms for Improving TCP Performance Over Wireless Links
    A Comparison of Mechanisms for Improving TCP Performance over Wireless Links Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz1 {hari,padmanab,ss,randy}@cs.berkeley.edu Computer Science Division, Department of EECS, University of California at Berkeley Abstract the estimated round-trip delay and the mean linear deviation from it. The sender identifies the loss of a packet either by Reliable transport protocols such as TCP are tuned to per- the arrival of several duplicate cumulative acknowledg- form well in traditional networks where packet losses occur ments or the absence of an acknowledgment for the packet mostly because of congestion. However, networks with within a timeout interval equal to the sum of the smoothed wireless and other lossy links also suffer from significant round-trip delay and four times its mean deviation. TCP losses due to bit errors and handoffs. TCP responds to all reacts to packet losses by dropping its transmission (conges- losses by invoking congestion control and avoidance algo- tion) window size before retransmitting packets, initiating rithms, resulting in degraded end-to-end performance in congestion control or avoidance mechanisms (e.g., slow wireless and lossy systems. In this paper, we compare sev- start [13]) and backing off its retransmission timer (Karn’s eral schemes designed to improve the performance of TCP Algorithm [16]). These measures result in a reduction in the in such networks. We classify these schemes into three load on the intermediate links, thereby controlling the con- broad categories: end-to-end protocols, where loss recovery gestion in the network. is performed by the sender; link-layer protocols, that pro- vide local reliability; and split-connection protocols, that Unfortunately, when packets are lost in networks for rea- break the end-to-end connection into two parts at the base sons other than congestion, these measures result in an station.
    [Show full text]
  • Lecture 8: Overview of Computer Networking Roadmap
    Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives
    [Show full text]
  • Bit & Baud Rate
    What’s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel | Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oft- quoted measure of speed is baud rate. Though the two aren’t the same, similarities exist under some circumstances. This tutorial will make the difference clear. Table Of Contents Background Bit Rate Overhead Baud Rate Multilevel Modulation Why Multiple Bits Per Baud? Baud Rate Examples References Background Most data communications over networks occurs via serial-data transmission. Data bits transmit one at a time over some communications channel, such as a cable or a wireless path. Figure 1 typifies the digital-bit pattern from a computer or some other digital circuit. This data signal is often called the baseband signal. The data switches between two voltage levels, such as +3 V for a binary 1 and +0.2 V for a binary 0. Other binary levels are also used. In the non-return-to-zero (NRZ) format (Fig. 1, again), the signal never goes to zero as like that of return- to-zero (RZ) formatted signals. 1. Non-return to zero (NRZ) is the most common binary data format. Data rate is indicated in bits per second (bits/s). Bit Rate The speed of the data is expressed in bits per second (bits/s or bps). The data rate R is a function of the duration of the bit or bit time (TB) (Fig. 1, again): R = 1/TB Rate is also called channel capacity C. If the bit time is 10 ns, the data rate equals: R = 1/10 x 10–9 = 100 million bits/s This is usually expressed as 100 Mbits/s.
    [Show full text]
  • SDS 940 THEORY of OPERATION Technical Manual SDS 98 01 26A
    SDS 940 THEORY OF OPERATION Technical Manual SDS 98 01 26A March 1967 SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960 ® 1967 Scientific Data Systems, Inc. Printed in U. S. A. TABLE OF CONTENTS Section Page I GENERAL DESCRIPTION ...•.••.•••••.••.••.•..•.••••• 1-1 1.1 General ................................... 1-1 1.2 Documentation .•...•..•.••..•••••••.•.••.••••• 1-1 1 .3 Physical Description ..•...•.••••.••..••••..••••. 1-2 1.4 Featu re s • . • . • • • • . • • • • • . • • . • . • . • • . • • • 1-2 1 .5 Input/Output Capabi I ity •.•....•.•.......•.....•.. 1-2 1 .5. 1 Parallel Input/Output System .•...•.....••..•. 1-6 1.5.1.1 Word Parallel System ...........•.. 1-6 1.5.1.2 Single-Bit Control and Sense System .... 1-8 1 .5.2 Time-Multiplexed Communication Channels .....•. 1-8 1 .5.3 Direct Memory Access System ............... 1-9 1.5.3.1 Direct Access Communication Channels •. 1-9 1.5.3.2 Data Multiplexing System ...•.....•. 1-10 1 .5.4 Priority Interrupt System . • . 1-10 1.5.4.1 Externa I Interrupt •..........•.... 1-11 1.5.4.2 Input/Output Channe I ..•..•.•••••. 1-12 1.5.4.3 Real-Time Clock •••.••.••••••••• 1-12 1 .6 Input/Output Devices •..•..••.••.••.••.•••••..•. 1-12 1 .6. 1 Buffered Input/Output Devices ..••.••.•.•••.•• 1-12 1.6.2 Unbuffered Input/Output Devices ••••..••••..•• 1-14 II OPERATION AND PROGRAMMING •..•••••.••.•..•....••. 2-1 2. 1 General .•..•.......•......•..............•. 2-1 2.2 Chang i ng Operat ion Modes •.•.••.••.•••.•..•..•.•• 2-2 2.3 Modes of Operation •..••.••.••.••..••••..••••••• 2-2 2.3. 1 Normal Mode .••••••••••••••••••••.••••• 2-2 2.3.1.1 Interrupt Rout i ne Return Instru ction .•.•. 2-3 2.3.1.2 Overflow Instructions ...••..•••••• 2-3 2.3.1.3 Mode Change Instruction ....••.•..• 2-3 2.3.1.4 Data Mu Itiplex Channe I Interlace Word •.
    [Show full text]
  • A Study Paper on Communication Network and Overview of Packet Switching Technology
    Council for Innovative Research International Journal of Computers & Technology www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012 A Study Paper on Communication Network and overview of Packet Switching Technology Sandeep panwar Amit garg Naresh kumar Abstract— In this paper,we highlight some of the principal paths between any two points; and second, dividing events that led up to the revolution in communications complete user messages into what he called message blocks among information processing systems. We devote most of then third, delivery of these messages by store and forward this presentation to a brief summary of the communication switching.[12] networks experience, emphasizing the description, Baran's work was similar to the research performed functions, analysis, design and performance measurement independently by Donald Davies at the National Physical of packet-switching networks. We also discuss some recent Laboratory, UK. In 1965, Davies developed the concept of advances in radio packet switching for long-haul. packet-switched networks and proposed development of a .Index Terms— ARPANET, communication networks, UK wide network.. A member of Davies' team met computer networks, networks, packet switching. Lawrence Roberts at the 1967 ACM Symposium on I. INTRODUCTION Operating System Principles, bringing the two groups together.[11] It is widely assumed that, for reasons of efficiency, the various communication networks (Internet, telephone, TV, Interestingly, Davies had chosen some of the same radio, ...) will merge into one ubiquitous, packet switched parameters for his original network design as Baran, such as network that carries all forms of communications. This view a packet size of 1024 bits. In 1966 Davies proposed that a of the future is particularly prevalent among the Internet network should be built at the laboratory to serve the needs community, where it is assumed that packet-switched IP is of NPL and prove the feasibility of packet switching.
    [Show full text]
  • LTE-Advanced
    Table of Contents INTRODUCTION........................................................................................................ 5 EXPLODING DEMAND ............................................................................................... 8 Smartphones and Tablets ......................................................................................... 8 Application Innovation .............................................................................................. 9 Internet of Things .................................................................................................. 10 Video Streaming .................................................................................................... 10 Cloud Computing ................................................................................................... 11 5G Data Drivers ..................................................................................................... 11 Global Mobile Adoption ........................................................................................... 11 THE PATH TO 5G ..................................................................................................... 15 Expanding Use Cases ............................................................................................. 15 1G to 5G Evolution ................................................................................................. 17 5G Concepts and Architectures ................................................................................ 20 Information-Centric
    [Show full text]
  • RTM-100 Troposcatter Modem Improved Range, Stability and Throughput for Troposcatter Communications
    RTM-100 Troposcatter Modem Improved range, stability and throughput for troposcatter communications The Raytheon RTM-100 troposcatter modem sets new milestones in troposcatter communications featuring 100 MB throughput. Benefits Superior Performance The use of turbo-coding An industry first, the waveform forward error correction The RTM-100 comes as n Operation up to 100 Mbps of Raytheon’s RTM-100 (FEC) and state-of-the-art a compact 2U rack with troposcatter modem offers digital processing ensures an n Unique waveform for multipath standard 70 MHz inputs/ strong resiliency to multipath, unprecedented throughput cancellation and optimized outputs. algorithms for fading immunity which negatively affects up to 100 Mbps. The modem n Quad diversity with soft decision troposcatter communications. integrates a non-linear digital algorithm Combined with an optimized pre-distortion capability. time-interleaving process and n Highly spectrum-efficient FEC The Gigabit Ethernet (GbE) signal channel diversity, the processing data port and the ability RTM- 100 delivers superior n Dual transmission path with to command and control transmission performance. independent digital pre- the operation over Simple The sophisticated algorithms, distortion Network Management including Doppler n Ethernet data and control Protocol (SNMP) simplify the compensation and maximum interface (SNMP and Web integration of the device into ratio combining between the graphical user interface) a net-centric Internet protocol four diversity inputs, ensure n Compact 2U 19-inch
    [Show full text]
  • On the Goodput of TCP Newreno in Mobile Networks
    On the Goodput of TCP NewReno in Mobile Networks Sushant Sharma Donald Gillies Wu-chun Feng Virginia Tech, Blacksburg, VA, USA Qualcomm, San Diego, USA Virginia Tech, Blacksburg, VA, USA Abstract—Next-generation wireless networks such as LTE and WiMax can achieve throughputs of several Mbps with TCP. These higher throughputs, however, can easily be destroyed by frequent handoffs, which occur in urban environments due to shadowing. A primary reason for the throughput drop during handoffs is the out of order arrival of packets at the receiver. As a result, in this paper, we model the precise effect of packet-reordering on the goodput of TCP NewReno. Specifically, we develop a TCP NewReno model that captures the goodput of TCP as a function of round-trip time, average time duration between packet-reorder events, average number of packets reordered during every reorder event, and the congestion window threshold of TCP NewReno. We also developed an emulator that runs on a router to implement packet reordering events from time to time. We validate our NewReno model by comparing the goodput results obtained by transferring data between two hosts connected via the emulator to the goodput results that our model predicts. I. MOTIVATION Next-generation wireless technologies such as WiMax and LTE (long term evolution) offer very high data rates (on Fig. 1. Handoff description. the order of several Mbps) to mobile users. As a result, mobile users will come to expect better peak performance a rare event in the wired Internet [12], [13], [14], [15], and from the networks than from current mobile networks.
    [Show full text]
  • Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
    Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network.
    [Show full text]
  • SDS 900 Series, 1962
    The SDS 920 is a low cost, general purpose computer designed for sci- entific engineering computation and for systems integration. It has all the speed and operating features found only in much more expensive equipment, including instructions that facilitate floating-point and multi- precision operations. An evaluation of the 920's unequalled perform- ance-per-dollar capabilities can be made by comparing the following characteristics with any presently available digital computer: EXECUTION TIMES: All times include both memory access & indexing Add ........................................ 16 microseconds Mutiply ..................................... 32 microseconds Floating-Point Operations: (24-bit Mantissa plus 9-bit Exponent) Add ....................................292 mic~oseconds Multiply ............................... .248 microseconds (39-bit Mantissa plus 9-bit Exponent) Add ....................................368 microseconds Multiply ............................... .600 micmsecands PROGRAMMING: -- OENERAL PURPOSE COMPUTERS Control Pawl SI3S 4r09 &rim iDS 920 is a low cost, general purpose computer designed for sci- .......: engineering computation and for systems integration. It has all I the speed and operating features found only in much more expensive equipment, including instructions that facilitate floating-point and multi- precision operations. An evaluation of the 920's unequalled perform- per-dollar capabilities can be made by comparing the following 8 cteristics with any presently available digital computer: ' TYPE: Single address with indc g and indirect addressing Binary I Core Memory Solid State ructions for facilitating floating-point ,, iulti-precision opera1 , Parity checking on Input/Output and I sry Operations Prc ~---.dOperator magnetic core 4096 words expandable to 16,- ly addressable 24-bit word and parity Non- r include bot,' mory access & indexing ................ 16 microseconds ...................... 32 microseconds ...................292 micro .................. .248 microseconds bit Exponent ...............................
    [Show full text]
  • Abbate Ch1-2
    6 Introductum Wide Web are prominent examples of informally created applications that became popular, not as the result of some central agency's mar­ Heat and ,-,UIH..4< keting plan, but through the spontaneous decisions of thousands of a.ndMeanings of Hacket(Switching independent users. In reconstructing the history of the Internet, I have been struck time and again by. the unexpected twists and turns its development has taken. Often a well-laid plan was abandoned after a short time and replaced by a new approach from an unexpected quarter..Rapid advances, such as the introduction of personal computers and the invention of local-area networks, continually threatened to make existing network technologies obsolete. In addition, responsibility for operating the Internet changed hands several times over the course Of all the ARPANET's technical innovations, perhaps the most cele­ of its first thirty years or so. How, in the face of all this change and brated was packet switching. Packet switching was an experimental, uncertainty, did the system survive and even flourish? I believe that even controversial method for transmitting data across a network. Its the key to the Internet's success was a commitment to flexibility and proponents claimed that it would increase the efficiency, reliability, and diversity, both in technical design and in organizational culture. No speed of data communications, butit was also quite complex to imple­ one could predict the specific changes that would revolutionize the ment, and some communications experts argued that the technique computing and communications industries at the end of the twentieth would never work.
    [Show full text]
  • Cohen-Internet-History-2011.Pdf
    International Journal of Technoethics, 2(2), 45-64, April-June 2011 45 Internet History Raphael Cohen-Almagor, University of Hull, UK ABSTRACT This paper outlines and analyzes milestones in the history of the Internet. As technology advances, it presents new societal and ethical challenges. The early Internet was devised and implemented in American research units, universities, and telecommunication companies that had vision and interest in cutting-edge research. The Internet then entered into the commercial phase (1984-1989). It was facilitated by the upgrading of back- bone links, the writing of new software programs, and the growing number of interconnected international networks. The author examines the massive expansion of the Internet into a global network during the 1990s when business and personal computers with different operating systems joined the universal network. The instant and growing success of social networking-sites that enable Netusers to share information, photos, private journals, hobbies, and personal as well as commercial interests with networks of mutual friends and colleagues is discussed. Keywords: ARPANET, History, ICANN, Innovation, Internet, Open Architecture, Packet Switching, Social Networking INTRODUCTION the biological kingdom. The third was Sigmund Freud (1856–1939), who acknowledged that History consists of a series of accumulated the mind is also unconscious and subject to the imaginative inventions. defence mechanism of repression, thus we are – Voltaire far from being Cartesian minds entirely transpar- ent to ourselves. And now, in the information Floridi (2009, 2010) argues that we are now revolution, we are in the process of dislocation experiencing the fourth scientific revolu- and reassessment of humanity’s fundamental tion.
    [Show full text]