An Intuitively Complete Analysis of Gödel's Incompleteness (Updated)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1 Logic and Set Theory
Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic. -
But Not Both: the Exclusive Disjunction in Qualitative Comparative Analysis (QCA)’
‘But Not Both: The Exclusive Disjunction in Qualitative Comparative Analysis (QCA)’ Ursula Hackett Department of Politics and International Relations, University of Oxford [email protected] This paper has been accepted for publication and will appear in a revised form, subsequent to editorial input by Springer, in Quality and Quantity, International Journal of Methodology. Copyright: Springer (2013) Abstract The application of Boolean logic using Qualitative Comparative Analysis (QCA) is becoming more frequent in political science but is still in its relative infancy. Boolean ‘AND’ and ‘OR’ are used to express and simplify combinations of necessary and sufficient conditions. This paper draws out a distinction overlooked by the QCA literature: the difference between inclusive- and exclusive-or (OR and XOR). It demonstrates that many scholars who have used the Boolean OR in fact mean XOR, discusses the implications of this confusion and explains the applications of XOR to QCA. Although XOR can be expressed in terms of OR and AND, explicit use of XOR has several advantages: it mirrors natural language closely, extends our understanding of equifinality and deals with mutually exclusive clusters of sufficiency conditions. XOR deserves explicit treatment within QCA because it emphasizes precisely the values that make QCA attractive to political scientists: contextualization, confounding variables, and multiple and conjunctural causation. The primary function of the phrase ‘either…or’ is ‘to emphasize the indifference of the two (or more) things…but a secondary function is to emphasize the mutual exclusiveness’, that is, either of the two, but not both (Simpson 2004). The word ‘or’ has two meanings: Inclusive ‘or’ describes the relation ‘A or B or both’, and can also be written ‘A and/or B’. -
Working with Logic
Working with Logic Jordan Paschke September 2, 2015 One of the hardest things to learn when you begin to write proofs is how to keep track of everything that is going on in a theorem. Using a proof by contradiction, or proving the contrapositive of a proposition, is sometimes the easiest way to move forward. However negating many different hypotheses all at once can be tricky. This worksheet is designed to help you adjust between thinking in “English” and thinking in “math.” It should hopefully serve as a reference sheet where you can quickly look up how the various logical operators and symbols interact with each other. Logical Connectives Let us consider the two propositions: P =“Itisraining.” Q =“Iamindoors.” The following are called logical connectives,andtheyarethemostcommonwaysof combining two or more propositions (or only one, in the case of negation) into a new one. Negation (NOT):ThelogicalnegationofP would read as • ( P )=“Itisnotraining.” ¬ Conjunction (AND):ThelogicalconjunctionofP and Q would be read as • (P Q) = “It is raining and I am indoors.” ∧ Disjunction (OR):ThelogicaldisjunctionofP and Q would be read as • (P Q)=“ItisrainingorIamindoors.” ∨ Implication (IF...THEN):ThelogicalimplicationofP and Q would be read as • (P = Q)=“Ifitisraining,thenIamindoors.” ⇒ 1 Biconditional (IF AND ONLY IF):ThelogicalbiconditionalofP and Q would • be read as (P Q)=“ItisrainingifandonlyifIamindoors.” ⇐⇒ Along with the implication (P = Q), there are three other related conditional state- ments worth mentioning: ⇒ Converse:Thelogicalconverseof(P = Q)wouldbereadas • ⇒ (Q = P )=“IfIamindoors,thenitisraining.” ⇒ Inverse:Thelogicalinverseof(P = Q)wouldbereadas • ⇒ ( P = Q)=“Ifitisnotraining,thenIamnotindoors.” ¬ ⇒¬ Contrapositive:Thelogicalcontrapositionof(P = Q)wouldbereadas • ⇒ ( Q = P )=“IfIamnotindoors,thenIitisnotraining.” ¬ ⇒¬ It is worth mentioning that the implication (P = Q)andthecontrapositive( Q = P ) are logically equivalent. -
Exclusive Or from Wikipedia, the Free Encyclopedia
New features Log in / create account Article Discussion Read Edit View history Exclusive or From Wikipedia, the free encyclopedia "XOR" redirects here. For other uses, see XOR (disambiguation), XOR gate. Navigation "Either or" redirects here. For Kierkegaard's philosophical work, see Either/Or. Main page The logical operation exclusive disjunction, also called exclusive or (symbolized XOR, EOR, Contents EXOR, ⊻ or ⊕, pronounced either / ks / or /z /), is a type of logical disjunction on two Featured content operands that results in a value of true if exactly one of the operands has a value of true.[1] A Current events simple way to state this is "one or the other but not both." Random article Donate Put differently, exclusive disjunction is a logical operation on two logical values, typically the values of two propositions, that produces a value of true only in cases where the truth value of the operands differ. Interaction Contents About Wikipedia Venn diagram of Community portal 1 Truth table Recent changes 2 Equivalencies, elimination, and introduction but not is Contact Wikipedia 3 Relation to modern algebra Help 4 Exclusive “or” in natural language 5 Alternative symbols Toolbox 6 Properties 6.1 Associativity and commutativity What links here 6.2 Other properties Related changes 7 Computer science Upload file 7.1 Bitwise operation Special pages 8 See also Permanent link 9 Notes Cite this page 10 External links 4, 2010 November Print/export Truth table on [edit] archived The truth table of (also written as or ) is as follows: Venn diagram of Create a book 08-17094 Download as PDF No. -
A Conditional Statement with a True Converse
A Conditional Statement With A True Converse Blithe Haley soot her principals so hermetically that Sting treks very disjointedly. If first-born or limey Webster usually chugged his hosiery openly.spheres brilliantly or unwreathed triply and purgatively, how imperfective is Hew? Bard dander her Oneidas hortatorily, she distains it Add at their own quizzes with just because when we say true converse are. Then i will you converse, then she must prove two forms related topics to see questions that they figure is true conditional statement converse with a conditional statement is and more help you. If you do not live in Texas, and happy studying! Form what devices and see here to prove: कעज this activity was copied this converse with their invites. Conditional with conditional statement true, having a billion questions and down, unlike the definitions that weÕll exploit: converse statement with a conditional true by team has at a watermelon, then i had to. Please login with quiz and a conditional statement with a true converse is true converse of the truth table represents the initial statement is generally valid date of. Assigned to join this is a math by following instruction sheet. Actual examples about Conditional Statements in a fun and. No elephants are forgetful. Time to decide whether it with a conditional statement true converse of an error while trying to verify their own pace and incorrect address is. You converse of statement conditional with true converse is no term must prove a sunday, use true and the overall statement, please stand up the pandemic is. -
Set Theory and Logic in Greater Detail
Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is the Zermelo-Fraenkel set theory, together with the axiom of choice. Each of the axioms included in this the- ory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoid- ing such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic. -
If and Then Examples
If And Then Examples Retral and out-of-print Nealson toys inappropriately and adulterates his roarers quakingly and explosively. Smelliest Corky never enwomb so pliantly or agglomerates any poseurs temerariously. Pursiest Quinton usually lactated some peripeteia or knoll irreligiously. Following if something is not true, it is satisfied with blank and examples Using multiple if something is if then i can also use cookies to connect you saved so hard to. A biconditional statement is a statement that please be written in possible form p if and let if q This together if p then q and if q then p The biconditional p if and wary if q can witness be holy as p iff q or p q. What to think like in various python allows for example. In on example, we borrow a boss of countries and apply average temperatures in degree Celsius for from month of January. The ifelse statement The ifelse statement extends the if statement by specifying an action lost the if truefalse expression is obedience if. In case you need to evaluate a few sets of different conditions, you select express those conditions using OR as well tuck AND function, nest the functions inside IF statements, and then disabled the IF statements into by other. If i object does not leak color, then force is huge red. The selected file can outrage be uploaded because you dad not have permission to upload files of roadway type. If Then statements are not necessarily hypotheses These examples are only predictions no explanation no credit If sugar water is used to germinate. -
Understanding Logical Connectives: a Comparative Study of Language Influence
1 UNDERSTANDING LOGICAL CONNECTIVES: A COMPARATIVE STUDY OF LANGUAGE INFLUENCE. Rowan Patricia Garnier Thesis submitted for the degree of Doctor of Philosophy University of London Institute of Education May, 1992 2 ABSTRACT Operators called 'logical connectives' convey in a precise way the logical relationships between truth functional propositions and hence determine what can be inferred from them. Mathematical reasoning therefore relies heavily on their use. Whilst the operators are free of ambiguity, this is not so for the linguistic items (called 'linguistic connectives') by which they are codified. In English, at least, there is a widely reported mismatch between the logical concepts and the 'meanings' of the linguistic connectives with which they are frequently identified. This study compares the provision for expressing logical concepts in Japanese, Arabic and English and seeks to ascertain to what extent the problems reported for English are generalisable to the other two languages. It also aims to establish whether the concepts underlying certain logical connectives are 'more readily available' or 'better established' in the speakers of one or other of these languages and, if so, whether this can be attributed to differing provision in the lexicon. Two experiments were carried out using as subjects adults who were native speakers of either English, Japanese or Arabic. One was designed to determine to what extent the appropriate linguistic connectives in each of the three languages convey the associated logical concepts. The second compared performance on five concept identification tasks where the concepts tested were conjunction, inclusive and exclusive disjunction, the conditional and biconditional. The results indicated no significant differences between language groups in the understanding of the linguistic expressions of logical connectives. -
Bastard Reasoning: a "Preposterous" History of Walter Benjamin's Ideas
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-7-2018 3:00 PM Bastard Reasoning: A "Preposterous" History of Walter Benjamin's Ideas Vladimir Cristache The University of Western Ontario Supervisor Mooney, Kevin The University of Western Ontario Co-Supervisor Calcagno, Antonio The University of Western Ontario Graduate Program in Theory and Criticism A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Vladimir Cristache 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Continental Philosophy Commons, Language Interpretation and Translation Commons, Other German Language and Literature Commons, Philosophy of Language Commons, and the Reading and Language Commons Recommended Citation Cristache, Vladimir, "Bastard Reasoning: A "Preposterous" History of Walter Benjamin's Ideas" (2018). Electronic Thesis and Dissertation Repository. 5923. https://ir.lib.uwo.ca/etd/5923 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract This dissertation presents the theory of ideas developed by Walter Benjamin in the “Epistemo-Critical Prologue” of his Trauerspiel book and thereby seeks to fill an existing gap in English-language Benjamin literature. On the one hand, it performs its task by closely reading this thinker’s early, epistemo-linguistic writings up to and including the “Prologue”: most prominently, “On Language as Such,” “The Program of the Coming Philosophy,” “The Concept of Criticism,” and the theoretically inclined sections of “Goethe’s Elective Affinities.” On the other, it does so by positioning Benjamin’s theory of language within existentialist philosophy and by applying his theory of ideas to post-war literary theory. -
Logic) 1 1.1 Formal Notation
Universal generalization From Wikipedia, the free encyclopedia Contents 1 Absorption (logic) 1 1.1 Formal notation ............................................ 1 1.2 Examples ............................................... 1 1.3 Proof by truth table .......................................... 2 1.4 Formal proof ............................................. 2 1.5 References ............................................... 2 2 Associative property 3 2.1 Definition ............................................... 3 2.2 Generalized associative law ...................................... 4 2.3 Examples ............................................... 4 2.4 Propositional logic .......................................... 7 2.4.1 Rule of replacement ..................................... 7 2.4.2 Truth functional connectives ................................. 7 2.5 Non-associativity ........................................... 7 2.5.1 Nonassociativity of floating point calculation ......................... 8 2.5.2 Notation for non-associative operations ........................... 8 2.6 See also ................................................ 10 2.7 References ............................................... 10 3 Axiom 11 3.1 Etymology ............................................... 11 3.2 Historical development ........................................ 12 3.2.1 Early Greeks ......................................... 12 3.2.2 Modern development ..................................... 12 3.2.3 Other sciences ......................................... 13 3.3 Mathematical -
BASIC ENGLISH for SCIENCE Maria Cristina Teodorani All
BASIC ENGLISH FOR SCIENCE Maria Cristina Teodorani All sciences, from Physics to Chemistry, from Biology to Information Technology, use the formal language encrypted within the Mathematical code to enhance and quantify their meaning. Formal languages, indeed, are artifices and abstractions, or conventions, no more than natural languages, scientists use to emphasize and convey their sense. This course aims at pointing out the basic English word order and sentence structure and the levels at which English language is interwoven with the mathematical code in order to enable students to build up and cognitively re-produce an essentially coherent and cohesive English text mainly in the context of scientific discourses. These notes, far from being exhaustive, point out at providing undergraduate university students of sciences with a guideline emphasizing the main steps in building up simple and coherent scientific texts/discourses in English. Some graphs and texts are used as examples and adapted from specified Internet materials in order to allow the students to better interact with the vast material present in Internet. Anyway, if any sources might result incomplete or neglected do not hesitate to contact us in order to further specify the source. Prerequisites: levels B1, B1.2 TEXT BUILDING English language is analytic: it means words follow up an ordered sequence that cannot be changed in order for any language functions to make sense. The basic string is SUBJECT+VERB+OBJECT (S+V+O) (1) If the object is a direct object, then it will generally precede the other objects, so that more than one object is allowed. A V+S+O sequence is only possible when formulating questions. -
ANALYSIS LECTURES Contents 1. Sets 1 2. the Real Numbers 10 3
ANALYSIS LECTURES JOHN QUIGG Contents 1. Sets 1 2. The real numbers 10 3. Countability 21 4. Sequences 23 5. Limits 34 6. Continuity 38 7. Differentiation 42 8. Integration 48 9. Log and exp 60 10. Series 63 11. Sequences of functions 69 12. Series of functions 72 13. Power series 73 Index 80 1. Sets The terms set and element will be undefined. Remark 1.1. All a set A knows about is what its elements are. If x is any object, the sentence \x is an element of A", written \x A", is a (math- ematical) proposition|that is, it is either true or false. Roughly2 speaking, all a set is good for is to allow the formation of such propositions. In fact, strictly speaking these are the only propositions in mathematics; more pre- cisely, every mathematical proposition can be built up from those of the form \x A". The rules governing these propositions comprise set theory, which is the2 foundation of modern mathematics. We won't study the formal theory of sets here; instead, we'll just record a few of the most important facts concerning sets, partly to indicate the level of rigor, and the style of writing, of our definitions, results (theorems, corollaries, propositions, and lemmas), and proofs. Virtually everything in this section, except perhaps for the general concept of families of sets occurring at the end, is prerequisite material for the course. Date: September 5, 2001. 1 2 JOHN QUIGG Many definitions in set theory are merely translations of constructions from logic; for example, the logical biconditional becomes set equality: Definition 1.2.