Energetics and Dynamics of Internal Tides in Monterey Bay Using Numerical Simulations

Total Page:16

File Type:pdf, Size:1020Kb

Energetics and Dynamics of Internal Tides in Monterey Bay Using Numerical Simulations ENERGETICS AND DYNAMICS OF INTERNAL TIDES IN MONTEREY BAY USING NUMERICAL SIMULATIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dujuan Kang November 2010 © 2011 by Kang Dujuan. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/sv691gk5449 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Oliver Fringer, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Monismith I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Street Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Mixing processes in the ocean play a key role in controlling the large-scale circulation and energy distribution of the ocean. Internal tide-driven mixing is most important among the processes to mix the ocean interior. In the past decade, significant efforts have been made to understand tidal mixing processes. However, more details and better understanding are still required for some fundamental problems, such as the mechanisms that govern internal tide generation, radiation, and dissipation processes and the associated energy partitioning. This research aims to understand the energetics and dynamics of tidal mixing processes through both theoretical analysis and numerical simulations. The complete form of barotropic and baroclinic energy equations are derived and employed as the theoretical framework for analyzing the tidal energy budget. These equations provide a more accurate and detailed energy analysis because they include the full nonlinear and nonhydrostatic energy flux contributions as well as an improved evaluation of the available potential energy. This approach has been implemented in the hydrodynamic SUNTANS model, which is being employed to study the energetics of barotropic-to- baroclinic tidal conversion over complex bathymetry in the real ocean. Three-dimensional, high-resolution simulations of the barotropic and baroclinic tides in the Monterey Bay area are conducted using the SUNTANS model. A de- tailed analysis of the energy budget is performed to address the question of how the barotropic tidal energy is partitioned between local barotropic dissipation and local generation of baroclinic energy. After that, we then assess how much of this generated baroclinic energy is lost locally versus how much is radiated away and made available for open-ocean mixing. The mechanism of internal tide generation is investigated iv by examining the dependence of barotropic-to-baroclinic energy conversion on three nondimensional parameters, namely the steepness parameter, the tidal excursion pa- rameter, and the Froude number. Finally, a simple parametric model is presented to estimate the barotropic-to-baroclinic energy conversion. v Acknowledgements It is a pleasure to thank everyone who provided me support and made this disser- tation possible. My sincerest gratitude goes to my advisor, Dr. Oliver Fringer, for his excellent guidance, encouragement, and support throughout my PhD study. He taught me numerous modelling skills beyond textbooks and inspired me with his in- novative thinking. Oliver was always available to discuss research and give advice. His patience and encouragement helped me overcome many difficulties and achieve my best. I am truly grateful to have such a wonderful mentor. I am especially grateful to Dr. Robert Street for leading me into the area of ocean sciences and giving me invaluable advice on my studies, research, and future career path. His careful dissertation reading and detailed comments are sincerely appreci- ated. I am very thankful to Dr. Stephen Monismith for helping me develop theoretical background. Many thanks to his insightful comments and useful suggestions to im- prove my dissertation. I would also like to thank Dr. Leif Thomas for serving as one of my oral exam committee members, and for his great ideas to broaden my research horizons. Finally, I thank my defense chair, Dr. Gianluca Iaccarino for his time and kind help. A special thank you goes to Dr. Rocky Geyer for his encouragement and insightful advice on my research and papers. I would also like to thank Dr. Karan Venayag- amoorthy and Dr. Alan Blumberg for providing useful comments and suggestions on my papers. I am very thankful to Dr. Steven Jachec, who has helped me with simulation setup and data analysis. His pioneer work in modelling internal tides in Monterey Bay has been an inspiration to me. I also thank Dr. Jody Klymak, Dr. James Girton, vi Dr. Eric Kunze and Samantha Brody for kindly providing field data in support of this dissertation. Many thanks to Dr. Edward Gross and the UCLA ROMS group for their great help with my research work on the ROMS-SUNTANS coupling. I would like to thank Dr. Jeffrey Koseff, who helped me adapt to the new study environment when I first came to Stanford and gave me great support when I was searching for future career opportunities. I greatly appreciate Dr. Dale Haidvogel and Dr. Enrique Curchitser for their support and understanding, which allow me to focus on completing this dissertation. My sincere thanks also go to Dr. Andreas Thurnherr and Dr. Sonya Legg for useful discussions and suggestions on my research. The Environmental Fluid Mechanics Laboratory (EFML) is a comfortable place to work in. I feel very fortunate to have been part of it and would like to thank all the faculty, researchers, post-docs, students, and staffs for creating such a big warm family. A special thank you goes to our research group, including the current mem- bers: Bing Wang, Yi-Ju Chou, Subbayya Sankaranarayanan, Vivien Chua, Phillip Wolfram, Sean Vitousek, Goncalo Gil, Sergey Koltakov, and the former: Zhonghua Zhang, Steven Jachec, Karan Venayagamoorthy, Jan Wang, Gang Zhao, Sheng Chen, Mike Barad, and Jun Lee. I also thank Jill Nomura and Sandra Wetzel for the kind help. I have been very lucky to have many good friends during my study at Stanford. I really enjoyed knowing all of them. I am particularly thankful to Yifang Chen for her support and care when I was writing this dissertation. My deepest gratitude is to my parents, whose endless love and constant encouragement have always been the strongest power supporting me. Finally, I give my unique thanks to my husband, Wei Li. This PhD dissertation is dedicated to him for his love, care, patience, and support. Thank you. My research and dissertation were funded by ONR Grant N00014-05-1-0294 (Sci- entific officers: Dr. C. Linwood Vincent, Dr. Terri Paluszkiewicz and Dr. Scott Harper). This support is gratefully acknowledged. vii Dedication To my husband, Wei Li, for his love, care, patience, and support. viii Contents Abstract iv Acknowledgements vi Dedication viii 1 Introduction 1 1.1 Motivation and Background . 1 1.2 Project Objectives . 4 1.3 Dissertation Layout . 5 2 Literature Review 6 2.1 Linear Internal Wave Theory . 6 2.2 Internal Tide Generation Mechanisms . 10 2.3 Numerical Modelling of Internal Tides . 15 2.4 Internal Tides in Monterey Bay . 16 2.4.1 Field Observations . 17 2.4.2 Numerical Simulations . 17 2.5 Summary . 20 3 Numerical Methodology 22 3.1 SUNTANS . 22 3.2 Nonhydrostatic Pressure Solver: Time Accuracy . 24 3.2.1 Governing Equations . 25 ix 3.2.2 Numerical Discretization . 26 3.2.3 Time Accuracy of Pressure Methods . 27 3.2.4 Temporal Convergence Test . 29 3.2.5 Conclusions . 34 3.3 Nonhydrostatic Pressure Solver: Computational Efficiency . 34 3.3.1 Pressure-Poisson Equation . 35 3.3.2 Preconditioned Conjugate Gradient Method . 37 3.3.3 Convergence Test of CG and PCG . 38 3.3.4 Conclusions . 41 3.4 One-way ROMS-SUNTANS Coupling . 41 3.4.1 ROMS vs. SUNTANS . 41 3.4.2 One- and Two-way Coupling . 42 3.4.3 Interpolation Algorithm . 45 3.4.4 Implementation of One-way Nesting . 49 3.5 Summary . 50 4 Calculation of Available Potential Energy in Internal Wave Fields 51 4.1 Introduction . 52 4.2 Interpretation of APE . 53 4.3 Energy Conservation Laws . 55 4.4 Energetics of Progressive Internal Waves . 57 4.4.1 Numerical Setup . 57 4.4.2 Evolution of First-mode Internal Waves . 58 4.4.3 Energetics . 60 4.5 Conclusions . 63 5 Theoretical Framework: Barotropic and Baroclinic Energy Equa- tions 64 5.1 Governing Equations . 64 5.1.1 Boundary Conditions . 66 5.1.2 Definitions and Assumptions . 68 5.2 Energy Equations . 72 x 5.2.1 Kinetic Energy Equation . 73 5.2.2 Perturbation Potential Energy Equation . 74 5.2.3 Available Potential Energy Equation . 74 5.2.4 Total Energy Equation . 75 5.3 Barotropic Energy Equations . 77 5.4 Baroclinic Energy Equations . 79 6 Numerical Simulations: Energetics and Dynamics of Internal Tides in the Monterey Bay Area 84 6.1 Introduction . 85 6.2 Theoretical Framework . 88 6.3 Simulation Setup . 92 6.3.1 The SUNTANS Model . 92 6.3.2 Domain and Grid .
Recommended publications
  • Slow Persistent Mixing in the Abyss
    Reference: van Haren, H., 2020. Slow persistent mixing in the abyss. Ocean Dyn., 70, 339- 352. Slow persistent mixing in the abyss by Hans van Haren* Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands. *e-mail: [email protected] Abstract Knowledge about deep-ocean turbulent mixing and flow circulation above abyssal hilly plains is important to quantify processes for the modelling of resuspension and dispersal of sediments in areas where turbulence sources are expected to be relatively weak. Turbulence may disperse sediments from artificial deep-sea mining activities over large distances. To quantify turbulent mixing above the deep-ocean floor around 4000 m depth, high-resolution moored temperature sensor observations have been obtained from the near-equatorial southeast Pacific (7°S, 88°W). Models demonstrate low activity of equatorial flow dynamics, internal tides and surface near-inertial motions in the area. The present observations demonstrate a Conservative Temperature difference of about 0.012°C between 7 and 406 meter above the bottom (hereafter, mab, for short), which is a quarter of the adiabatic lapse rate. The very weakly stratified waters with buoyancy periods between about six hours and one day allow for slowly varying mixing. The calculated turbulence dissipation rate values are half to one order of magnitude larger than those from open-ocean turbulent exchange well away from bottom topography and surface boundaries. In the deep, turbulent overturns extend up to 100 m tall, in the ocean-interior, and also reach the lowest sensor. The overturns are governed by internal-wave-shear and -convection.
    [Show full text]
  • Ocean Acoustic Tomography Has Heat Content, Velocity, and Vorticity in the North Pacific Thermohaline Circulation and Climate
    B. Dushaw, G. Bold, C.-S. Chiu, J. Colosi, B. Cornuelle, Y. Desaubies, M. Dzieciuch, A. Forbes, F. Gaillard, Brian Dushaw, Bruce Howe A. Gavrilov, J. Gould, B. Howe, M. Lawrence, J. Lynch, D. Menemenlis, J. Mercer, P. Mikhalevsky, W. Munk, Applied Physics Laboratory and School of Oceanography I. Nakano, F. Schott, U. Send, R. Spindel, T. Terre, P. Worcester, C. Wunsch, Observing the Ocean in the 2000’s: College of Ocean and Fisheries Sciences A Strategy for the Role of Acoustic Tomography in Ocean Climate Observation. In: Observing the Ocean Ocean Acoustic Tomography: 1970–21st Century University of Washington Ocean Acoustic Tomography: 1970–21st Century http://staff.washington.edu/dushaw in the 21st Century, C.J. Koblinsky and N.R. Smith (eds), Bureau of Meteorology, Melbourne, Australia, 2001. ABSTRACT PROCESS EXPERIMENTS Deep Convection—Greenland and Labrador Seas ATOC—Acoustic Thermometry of Ocean Climate Oceanic convection connects the surface ocean to the deep ocean with important consequences for the global Since it was first proposed in the late 1970’s (Munk and Wunsch 1979, 1982), ocean acoustic tomography has Heat Content, Velocity, and Vorticity in the North Pacific thermohaline circulation and climate. Deep convection occurs in only a few locations in the world, and is difficult The goal of the ATOC project is to measure the ocean temperature on basin scales and to understand the evolved into a remote sensing technique employed in a wide variety of physical settings. In the context of to observe. Acoustic arrays provide both the spatial coverage and temporal resolution necessary to observe variability. The acoustic measurements inherently average out mesoscale and internal wave noise that long-term oceanic climate change, acoustic tomography provides integrals through the mesoscale and other The 1987 reciprocal acoustic tomography experiment (RTE87) obtained unique measurements of gyre-scale deep-water formation.
    [Show full text]
  • Internal Tides in the Solomon Sea in Contrasted ENSO Conditions
    Ocean Sci., 16, 615–635, 2020 https://doi.org/10.5194/os-16-615-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Internal tides in the Solomon Sea in contrasted ENSO conditions Michel Tchilibou1, Lionel Gourdeau1, Florent Lyard1, Rosemary Morrow1, Ariane Koch Larrouy1, Damien Allain1, and Bughsin Djath2 1Laboratoire d’Etude en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France 2Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht, Germany Correspondence: Michel Tchilibou ([email protected]), Lionel Gourdeau ([email protected]), Florent Lyard (fl[email protected]), Rosemary Morrow ([email protected]), Ariane Koch Larrouy ([email protected]), Damien Allain ([email protected]), and Bughsin Djath ([email protected]) Received: 1 August 2019 – Discussion started: 26 September 2019 Revised: 31 March 2020 – Accepted: 2 April 2020 – Published: 15 May 2020 Abstract. Intense equatorward western boundary currents the tidal effects over a longer time. However, when averaged transit the Solomon Sea, where active mesoscale structures over the Solomon Sea, the tidal effect on water mass transfor- exist with energetic internal tides. In this marginal sea, the mation is an order of magnitude less than that observed at the mixing induced by these features can play a role in the ob- entrance and exits of the Solomon Sea. These localized sites served water mass transformation. The objective of this paper appear crucial for diapycnal mixing, since most of the baro- is to document the M2 internal tides in the Solomon Sea and clinic tidal energy is generated and dissipated locally here, their impacts on the circulation and water masses, based on and the different currents entering/exiting the Solomon Sea two regional simulations with and without tides.
    [Show full text]
  • Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston a Dissertation Submitted I
    Resonant Interactions of Surface and Internal Waves with Seabed Topography By Louis-Alexandre Couston A dissertation submitted in partial satisfaction of the requirements for the degree of Doctorate of Philosophy in Engineering - Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Mohammad-Reza Alam, Chair Professor Ronald W. Yeung Professor Philip S. Marcus Professor Per-Olof Persson Spring 2016 Abstract Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston Doctor of Philosophy in Engineering - Mechanical Engineering University of California, Berkeley Professor Mohammad-Reza Alam, Chair This dissertation provides a fundamental understanding of water-wave transformations over seabed corrugations in the homogeneous as well as in the stratified ocean. Contrary to a flat or mildly sloped seabed, over which water waves can travel long distances undisturbed, a seabed with small periodic variations can strongly affect the propagation of water waves due to resonant wave-seabed interactions{a phenomenon with many potential applications. Here, we investigate theoretically and with direct simulations several new types of wave transformations within the context of inviscid fluid theory, which are different than the classical wave Bragg reflection. Specifically, we show that surface waves traveling over seabed corrugations can become trapped and amplified, or deflected at a large angle (∼ 90◦) relative to the incident direction of propagation. Wave trapping is obtained between two sets of parallel corrugations, and we demonstrate that the amplification mechanism is akin to the Fabry-Perot resonance of light waves in optics. Wave deflection requires three-dimensional and bi-chromatic corrugations and is obtained when the surface and corrugation wavenumber vectors satisfy a newly found class I2 Bragg resonance condition.
    [Show full text]
  • The Impact of Fortnightly Stratification Variability on the Generation Of
    Journal of Marine Science and Engineering Article The Impact of Fortnightly Stratification Variability on the Generation of Baroclinic Tides in the Luzon Strait Zheen Zhang 1,*, Xueen Chen 1 and Thomas Pohlmann 2 1 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] 2 Centre for Earth System Research and Sustainability, Institute of Oceanography, University of Hamburg, 20146 Hamburg, Germany; [email protected] * Correspondence: [email protected] Abstract: The impact of fortnightly stratification variability induced by tide–topography interaction on the generation of baroclinic tides in the Luzon Strait is numerically investigated using the MIT general circulation model. The simulation shows that advection of buoyancy by baroclinic flows results in daily oscillations and a fortnightly variability in the stratification at the main generation site of internal tides. As the stratification for the whole Luzon Strait is periodically redistributed by these flows, the energy analysis indicates that the fortnightly stratification variability can significantly affect the energy transfer between barotropic and baroclinic tides. Due to this effect on stratification variability by the baroclinic flows, the phases of baroclinic potential energy variability do not match the phase of barotropic forcing in the fortnight time scale. This phenomenon leads to the fact that the maximum baroclinic tides may not be generated during the maximum barotropic forcing. Therefore, a significant impact of stratification variability on the generation of baroclinic tides is demonstrated Citation: Zhang, Z.; Chen, X.; by our modeling study, which suggests a lead–lag relation between barotropic tidal forcing and Pohlmann, T. The Impact of maximum baroclinic response in the Luzon Strait within the fortnightly tidal cycle.
    [Show full text]
  • On the Fraction of Internal Tide Energy Dissipated Near Topography
    On the Fraction of Internal Tide Energy Dissipated Near Topography Louis C. St. Laurent Department of Oceanography, Florida State University, Tallahassee, Florida Jonathan D. Nash College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon Abstract. Internal tides have been implicated as a major source of me- chanical energy for mixing in the ocean interior. Indeed, microstructure and tracer measurements have indicated that enhanced turbulence levels occur near topography where internal tides are generated. However, the details of the energy budget and the mechanisms by which energy is transferred from the internal tide to turbulence have been uncertain. It now seems that the energy levels associated with locally enhanced mixing near topography may constitute only a small fraction of the available internal tide energy flux. In this study, the generation, radiation, and energy dissipation of deep ocean internal tides are examined. Properties of the internal tide at the Mid-Atlantic Ridge and Hawaiian Ridge are considered. It is found that most internal tide energy is generated as low modes. The Richardson number of the generated internal tide typically exceeds unity for these motions, so direct shear instability of the generated waves is not the dominant energy transfer mechanism. It also seems that wave-wave interactions are ineffective at transferring energy from the large wavelengths that dominate the energy flux. Instead, it seems that much of the generated energy radiates away from the generation site in low mode waves. These low modes must dissipate somewhere in the ocean, though this likely occurs over O(1000 km) distances as the waves propagate.
    [Show full text]
  • Internal Tide Nonstationarity and Wave–Mesoscale Interactions in the Tasman Sea
    OCTOBER 2020 S A V A G E E T A L . 2931 Internal Tide Nonstationarity and Wave–Mesoscale Interactions in the Tasman Sea ANNA C. SAVAGE AND AMY F. WATERHOUSE Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California SAMUEL M. KELLY Large Lakes Observatory and Physics and Astronomy Department, University of Minnesota–Duluth, Duluth, Minnesota (Manuscript received 19 November 2019, in final form 13 July 2020) ABSTRACT Internal tides, generated by barotropic tides flowing over rough topography, are a primary source of energy into the internal wave field. As internal tides propagate away from generation sites, they can dephase from the equilibrium tide, becoming nonstationary. Here, we examine how low-frequency quasigeostrophic background flows scatter and dephase internal tides in the Tasman Sea. We demonstrate that a semi-idealized internal tide model [the Coupled-Mode Shallow Water model (CSW)] must include two background flow effects to replicate the in situ internal tide energy fluxes observed during the Tasmanian Internal Tide Beam Experiment (TBeam). The first effect is internal tide advection by the background flow, which strongly de- pends on the spatial scale of the background flow and is largest at the smaller scales resolved in the back- ground flow model (i.e., 50–400 km). Internal tide advection is also shown to scatter internal tides from 2 vertical mode-1 to mode-2 at a rate of about 1 mW m 2. The second effect is internal tide refraction due to background flow perturbations to the mode-1 eigenspeed. This effect primarily dephases the internal tide, 2 attenuating stationary energy at a rate of up to 5 mW m 2.
    [Show full text]
  • Continuous Seiche in Bays and Harbors
    Manuscript prepared for Ocean Sci. with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls. Date: 14 February 2016 Continuous seiche in bays and harbors J. Park1, J. MacMahan2, W. V. Sweet3, and K. Kotun1 1National Park Service, 950 N. Krome Ave, Homestead, FL, USA 2Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA 3NOAA, 1305 East West Hwy, Silver Spring, MD, USA Correspondence to: J. Park ([email protected]) Abstract. Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time after the event. However, continuous small–amplitude seiches have been recognized presenting a question as to the origin of continuous forcing. We examine 6 bays around the Pacific where continuous seiches 5 are evident, and based on spectral, modal and kinematic analysis suggest that tidally–forced shelf– resonances are a primary driver of continuous seiches. 1 Introduction It is long recognized that coastal water levels resonate. Resonances span the ocean as tides (Darwin, 1899) and bays as seiches (Airy, 1877; Chrystal, 1906). Bays and harbors offer refuge from the open 10 ocean by effectively decoupling wind waves and swell from an anchorage, although offshore waves are effective in driving resonant modes in the infragravity regime at periods of 30 s to 5 minutes (Okihiro and Guza, 1996; Thotagamuwage and Pattiaratchi, 2014), and at periods between 5 minutes and 2 hours bays and harbors can act as efficient amplifiers (Miles and Munk, 1961). Tides expressed on coasts are significantly altered by coastline and bathymetry, for example, 15 continental shelves modulate tidal amplitudes and dissipate tidal energy (Taylor, 1919) such that tidally–driven standing waves are a persistent feature on continental shelves (Webb, 1976; Clarke and Battisti, 1981).
    [Show full text]
  • (CCRUN) Phase II
    Supporting Regional Implementation of Integrated Climate Resilience Consortium for Climate Risk in the Urban Northeast (CCRUN) Phase II Research Highlights, September 1, 2015 – May 31, 2016 Boston New York City Philadelphia CCRUN’s Mission CCRUN conducts stakeholder-driven research that reduces climate- related vulnerability and advances opportunities for adaptation in the urban Northeast September 2015 – May 2016 | 1 The CCRUN Team Lead Investigators, Sectors, and Cross-Cutting Themes: Radley Horton (CU), Patrick Kinney (CU), Franco Montalto (Drexel), Richard Palmer (UMass), Philip Orton (Stevens), William Solecki (CUNY) Program Manager: Daniel Bader (CU) Investigators: Sandra Baptista (CU), Alan Blumberg (Stevens), Robert Chen (CU), Nickitas Georgas (Stevens), Vivien Gornitz (CU), Patrick Gurian (Drexel), Yochanan Kushnir (CU), Kytt MacManus (CU), Malgosia Madajewicz (CU) Research & Support Staff: Jim Carcone (CU), Annie Gerard (CU), Merlie Hansen (CU), Valentina Mara (CU), Reza Marsooli (Stevens), Dara Mendeloff (CU), Danielle Peters (CU), John Scialdone (CU), Justin Schulte (Stevens), Raquel Sousa (Drexel), David Strom (CU), Sri Vinay (CU), Ziwen Yu (Drexel) Graduate Students and Post-docs: Roham Bakhtyar (Stevens), Grace Cambareri (UMass), Ethan Coffel (CU), Leslie DeCristofaro (UMass), Erin Friedman (CUNY), Stephanie Miller (Drexel), Jennifer Nguyen (CU), Ashlinn Quinn (CU), Lauren Smalls-Mantey (Drexel), Kate Weinberger (CU), Sarah Whateley (UMass) Research Affiliates: Susana Adamo (CU), Mark Arend (CCNY), James Booth (CCNY), Arthur
    [Show full text]
  • Brief Communication: Modulation Instability of Internal Waves in a Smoothly Stratified Shallow Fluid with a Constant Buoyancy Fr
    Nat. Hazards Earth Syst. Sci., 19, 583–587, 2019 https://doi.org/10.5194/nhess-19-583-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Brief communication: Modulation instability of internal waves in a smoothly stratified shallow fluid with a constant buoyancy frequency Kwok Wing Chow1, Hiu Ning Chan2, and Roger H. J. Grimshaw3 1Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong 2Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 3Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK Correspondence: Kwok Wing Chow ([email protected]) Received: 9 August 2018 – Discussion started: 14 August 2018 Revised: 28 February 2019 – Accepted: 5 March 2019 – Published: 19 March 2019 Abstract. Unexpectedly large displacements in the interior breaking of such waves may have an impact on circulation of the oceans are studied through the dynamics of packets of (Pedlosky, 1987). There is a substantial literature on the ob- internal waves, where the evolution of these displacements servations and theories of large-amplitude internal waves in is governed by the nonlinear Schrödinger equation. In cases shallow water (Stanton and Ostrovsky, 1998). Many studies with a constant buoyancy frequency, analytical treatment can concentrate on solitary waves in long-wave situations em- be performed. While modulation instability in surface wave ploying the Korteweg–de Vries equation (Holloway et al., packets only arises for sufficiently deep water, “rogue” in- 1997) but not on the highly transient modes with the poten- ternal waves may occur in shallow water and intermediate tial for abrupt growth.
    [Show full text]
  • Continuous Seiche in Bays and Harbors J
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 12, 2361–2394, 2015 www.ocean-sci-discuss.net/12/2361/2015/ doi:10.5194/osd-12-2361-2015 OSD © Author(s) 2015. CC Attribution 3.0 License. 12, 2361–2394, 2015 This discussion paper is/has been under review for the journal Ocean Science (OS). Continuous seiche in Please refer to the corresponding final paper in OS if available. bays and harbors Continuous seiche in bays and harbors J. Park et al. 1 2 3 1 J. Park , J. MacMahan , W. V. Sweet , and K. Kotun Title Page 1 National Park Service, 950 N. Krome Ave, Homestead, FL, USA Abstract Introduction 2Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA 3NOAA, 1305 East West Hwy, Silver Spring, MD, USA Conclusions References Received: 4 September 2015 – Accepted: 18 September 2015 – Published: 8 October 2015 Tables Figures Correspondence to: J. Park ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 2361 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time 12, 2361–2394, 2015 after the event. However, continuous small-amplitude seiches have recently been rec- 5 ognized presenting a question as to the origin of continuous forcing. We examine 6 Continuous seiche in bays around the Pacific where continuous seiches are evident, and based on spectral, bays and harbors modal and kinematic analysis suggest that tidally-forced shelf-resonances are a pri- mary driver of continuous seiches.
    [Show full text]
  • TR-2933 Street Scale Modeling of Storm Surge Inundation Along The
    TR-2933 Street Scale Modeling of Storm Surge Inundation along the New Jersey Hudson River Waterfront Alan Blumberg, Thomas Herrington, Larry Yin, and Nickitas Georgas Davidson Laboratory Technical Report TR-2933 Stevens Institute of Technology Hoboken, NJ October 2014 1 TR-2933 Executive Summary A new, high-resolution, hydrodynamic model that encompasses the urban coastal waters and coastal flood plain of New Jersey along the Hudson River waterfront opposite New York City has been developed and validated. 3.1m model grid resolution combined with high-resolution LiDAR elevation datasets permit a street by street focus to inundation modeling. The waterfront inundation model (NJWIM) is a sECOM model application, nested into a larger New York Bight sECOM model (NYHOPS), itself nested to an even larger Northwest Atlantic sECOM model (SNAP). Robust wetting and drying of land in the model physics provides for the dynamic prediction of flood elevations and velocities across land features during inundation events. NJWIM was forced by water levels from the NYHOPS hindcast of Hurricane Sandy. The hindcast utilized Sandy over ocean wind field and atmospheric pressure data, offshore wave and tidal boundary forcing, atmospheric heat fluxes, and interior streamflow data. Validation against 56 water marks and 16 edgemarks provided via the USGS and through an extensive crowd sourcing effort consisting of photographs, videos and personal stories shows that the model is capable of computing overland water elevations quite accurately. The correlation coefficient (R2) between the water mark observations and the model results is 0.92. The standard deviation of the residual error is 0.07 m. The simulated water levels at 78% of the data measurement locations have less than 20% error.
    [Show full text]