Light IV Doppler Shift

Total Page:16

File Type:pdf, Size:1020Kb

Light IV Doppler Shift Light IV Doppler Shift February 14, 2012 Recap: Blackbody Curve! The peak of the blackbody curve tells you temperature! ! The overall height of the blackbody curve tells you Luminosity! ! Luminosity depends on Temperature and Size! Atom & Spectra • This is the spectrum of the Sun • Dark features are absorption lines • Tell us about composition of the Sun • The Sun has a hot dense core surrounded by a lower density atmosphere Nucleus contains Protons and Neutrons Nucleus “Ground” state is lowest energy state other states are called “excited” states Energy levels become more closely spaced further from the nucleus Photons (light-waves) are emitted from an atom when an electron moves from a higher energy level to a lower energy level Emission Nucleus Photons (light-waves) can also be absorbed by an atom when an electron moves from a lower energy level to a higher energy level Absorption Nucleus Hydrogen 13.6 eV (binding energy) 12.73 eV 12.07 eV 10.19 eV 0 eV hc E = hf = λ € All stars produce dark line absorption spectra Time to Work on Lecture Tutorials • Work in pairs • Ask nearby groups for help – Gabriels are in short supply today • Light & Atoms (pg 65, last class) • Analyzing Spectra (pg 71) • Types of Spectra (pg 63) 9 What can we learn by analyzing starlight? • A star’s temperature - peak wavelength of the spectral curve • A star’s chemical composition - dips in the spectral curve or the lines in the absorption spectrum • A star’s motion The Doppler Effect • Definition: “The change in wavelength of radiation (light) due to the relative motion between the source and the observer along the line of sight.” http://www.youtube.com/watch?v=LIvVzJ6KZpk Astronomers use the Doppler Effect to learn about the radial (along the line of sight) motions of stars, and other astronomical objects. Real Life Examples of Doppler Effect • Doppler Radar (for weather) • Airplane radar system (anything with radar) • Submarine sonar system The Doppler Effect • Definition: “The change in wavelength of radiation (light) due to the relative motion between the source and the observer along the line of sight.” Doppler Effect • When something which is giving off light moves towards or away from you, the wavelength of the emitted light is changed or shifted V=0 Doppler Effect • When the source of light is moving away from the observer the wavelength of the emitted light will appear to increase. We call this a “redshift”. Doppler Effect • When the source of light is moving towards the observer the wavelength of the emitted light will appear to decrease. We call this a “blueshift”. The Doppler Effect • Definition: “The change in wavelength of radiation due to relative motion between the source and the observer along the line of sight.” Doppler Effect • “Along the line of sight” means the Doppler Effect happens only if the object which is emitting light is moving towards you or away from you. – An object moving “side to side” or perpendicular, relative to your line of sight, will not experience a Doppler Effect. Astronomy Application V=0 http://www.youtube.com/watch?v=gHxGz6RjZXs Doppler effect of a spinning galaxy Doppler Shifts • Redshift (to longer wavelengths): The source is moving away from the observer • Blueshift (to shorter wavelengths): The source is moving towards the observer Δλ = wavelength shift λo = wavelength if source is not moving v = velocity of source c = speed of light What can we learn by analyzing starlight? • A star’s temperature - peak wavelength of the spectral curve • A star’s chemical composition - dips in the spectral curve or the lines in the absorption spectrum • A star’s motion - Doppler shift A bright star is moving away from Earth. Which of the choices best completes the following statement describing the spectrum of this star? A(n) _________ spectrum that is __________ relative to an unmoving star A) absorption; blueshifted B) emission; redshifted C) continuous; blueshifted D) absorption; redshifted E) continuous; redshifted 23 Doppler Shift Lecture Tutorial p. 73 • Work with a partner! • Read the instructions and questions carefully. • Discuss the concepts and your answers with one another. Take time to understand it now!!!! • Come to a consensus answer you both agree on and write complete thoughts into your LT. • If you get stuck or are not sure of your answer, ask another group. The Doppler Effect causes light from a source moving away to: 1. be shifted to shorter wavelengths. 2. be shifted to longer wavelengths. 3. changes in velocity. 4. Both a and c above 5. Both b and c above You observe two spectra (shown below) that are redshifted relative to that of a stationary source of light. Which of the following statements best describes how the sources of light that produced the two spectra were moving? BLUE RED Spectrum A Spectrum B 1. Source A is moving faster than source B. 2. Source B is moving faster than source A. 3. Both sources are moving with the same speed. 4. It is impossible to tell from looking at these spectra. The following are NOT Think Pair Questions, you are to do them by yourself - pull out a piece of paper, name LEGIBLE THINK OF THIS AS A QUIZ 27 What we can Learn about Stars. 1! visible visible range range Object A Object B Energy Output per second Energy Energy Output per second Energy V I B G Y O R Wavelength V I B G Y O RWavelength visible visible range range Object D Object C Energy Output per second Output Energy Energy Output per second Output Energy V I B G Y O RWavelength V I B G Y O RWavelength Put these stars in order from smallest to largest (use = signs if necessary)! 10,000 D 1,000 100 10 C B Rank the stars A-E 1 A from largest to .1 .01 E .001 smallest. ! units) (solar Luminosity .0001 20000! 10000! 5000! Temperature (K) Describe what happens in each of the scenarios above (i.e. emission/absorption of low/high energy, low/high frequency, short/long wavelength)! Use the four spectra for Objects A-D, shown below, to answer the next question. Note that one of the spectra is from an object at rest (not moving relative to Earth) and the remaining spectra come from objects that are all moving away from the observer. [Assume that the left end of the spectrum corresponds with short wavelengths and the right end corresponds with long wavelengths.] Which object would be at rest?! A) Object A! B) Object B! C) Object C! D) Object D! E) They are moving the same speed!.
Recommended publications
  • Chapter-5 Doppler Effect
    Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative.
    [Show full text]
  • The Montague Doppler Radar, an Overview June 2018
    ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the
    [Show full text]
  • Aspects of Spatially Homogeneous and Isotropic Cosmology
    Faculty of Technology and Science Department of Physics and Electrical Engineering Mikael Isaksson Aspects of Spatially Homogeneous and Isotropic Cosmology Degree Project of 15 credit points Physics Program Date/Term: 02-04-11 Supervisor: Prof. Claes Uggla Examiner: Prof. Jürgen Fuchs Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Abstract In this thesis, after a general introduction, we first review some differential geom- etry to provide the mathematical background needed to derive the key equations in cosmology. Then we consider the Robertson-Walker geometry and its relation- ship to cosmography, i.e., how one makes measurements in cosmology. We finally connect the Robertson-Walker geometry to Einstein's field equation to obtain so- called cosmological Friedmann-Lema^ıtre models. These models are subsequently studied by means of potential diagrams. 1 CONTENTS CONTENTS Contents 1 Introduction 3 2 Differential geometry prerequisites 8 3 Cosmography 13 3.1 Robertson-Walker geometry . 13 3.2 Concepts and measurements in cosmography . 18 4 Friedmann-Lema^ıtre dynamics 30 5 Bibliography 42 2 1 INTRODUCTION 1 Introduction Cosmology comes from the Greek word kosmos, `universe' and logia, `study', and is the study of the large-scale structure, origin, and evolution of the universe, that is, of the universe taken as a whole [1]. Even though the word cosmology is relatively recent (first used in 1730 in Christian Wolff's Cosmologia Generalis), the study of the universe has a long history involving science, philosophy, eso- tericism, and religion. Cosmologies in their earliest form were concerned with, what is now known as celestial mechanics (the study of the heavens).
    [Show full text]
  • Surface Curvature-Quantized Energy and Forcefield in Geometrochemical Physics
    Title: Surface curvature-quantized energy and forcefield in geometrochemical physics Author: Z. R. Tian, Univ. of Arkansas, Fayetteville, AR 72701, USA, (Email) [email protected]. Text: Most recently, simple-shape particles’ surface area-to-volume ratio has been quantized into a geometro-wavenumber (Geo), or geometro-energy (EGeo) hcGeo, to quantitatively predict and compare nanoparticles (NPs), ions, and atoms geometry- quantized properties1,2. These properties range widely, from atoms’ electronegativity (EN) and ionization potentials to NPs’ bonding energy, atomistic nature, chemical potential of formation, redox potential, surface adsorbates’ stability, and surface defects’ reactivity. For countless irregular- or complex-shaped molecules, clusters, and NPs whose Geo values are uneasy to calculate, however, the EGeo application seems limited. This work has introduced smaller surfaces’ higher curvature-quantized energy and forcefield for linking quantum mechanics, thermodynamics, electromagnetics, and Newton’s mechanics with Einstein’s general relativity. This helps quantize the gravity, gravity-counterbalancing levity, and Einstein’s spacetime, geometrize Heisenberg’s Uncertainty, and support many known theories consistently for unifying naturally the energies and forcefields in physics, chemistry, and biology. Firstly, let’s quantize shaper corners’ 1.24 (keVnm). Indeed, smaller atoms’ higher and edges’ greater surface curvature (1/r) into EN and smaller 0-dimensional (0D) NPs’ a spacetime wavenumber (ST), i.e. Spacetime lower melting point (Tm) and higher (i.e. Energy (EST) = hc(ST) = hc(1/r) (see the Fig. more blue-shifted) optical bandgap (EBG) (see 3 below), where the r = particle radius, h = the Supplementary Table S1)3-9 are linearly Planck constant, c = speed of light, and hc governed by their greater (1/r) i.e.
    [Show full text]
  • An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
    aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis.
    [Show full text]
  • Gravitational Redshift/Blueshift of Light Emitted by Geodesic
    Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 / Published online: 11 February 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer.
    [Show full text]
  • A Stellar Flare-Coronal Mass Ejection Event Revealed by X-Ray Plasma Motions
    A stellar flare-coronal mass ejection event revealed by X-ray plasma motions C. Argiroffi1,2⋆, F. Reale1,2, J. J. Drake3, A. Ciaravella2, P. Testa3, R. Bonito2, M. Miceli1,2, S. Orlando2, and G. Peres1,2 1 University of Palermo, Department of Physics and Chemistry, Piazza del Parlamento 1, 90134, Palermo, Italy. 2 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134, Palermo, Italy. 3 Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138, USA. ⋆ costanza.argiroffi@unipa.it May 28, 2019 Coronal mass ejections (CMEs), often associ- transported along the magnetic field lines and heats ated with flares 1,2,3, are the most powerful mag- the underlying chromosphere, that expands upward netic phenomena occurring on the Sun. Stars at hundreds of kms−1, filling the overlying magnetic show magnetic activity levels up to 104 times structure (flare rising phase). Then this plasma gradu- higher 4, and CME effects on stellar physics and ally cools down radiatively and conductively (flare de- circumstellar environments are predicted to be cay). The flare magnetic drivers often cause also large- significant 5,6,7,8,9. However, stellar CMEs re- scale expulsions of previously confined plasma, CMEs, main observationally unexplored. Using time- that carry away large amounts of mass and energy. resolved high-resolution X-ray spectroscopy of a Solar observations demonstrate that CME occurrence, stellar flare on the active star HR 9024 observed mass, and kinetic energy increase with increasing flare with Chandra/HETGS, we distinctly detected energy 1,2, corroborating the flare-CME link. Doppler shifts in S xvi, Si xiv, and Mg xii lines Active stars have stronger magnetic fields, higher that indicate upward and downward motions of flare energies, hotter and denser coronal plasma 12.
    [Show full text]
  • Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
    Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6].
    [Show full text]
  • Observation of Exciton Redshift-Blueshift Crossover in Monolayer WS2
    Observation of exciton redshift-blueshift crossover in monolayer WS2 E. J. Sie,1 A. Steinhoff,2 C. Gies,2 C. H. Lui,3 Q. Ma,1 M. Rösner,2,4 G. Schönhoff,2,4 F. Jahnke,2 T. O. Wehling,2,4 Y.-H. Lee,5 J. Kong,6 P. Jarillo-Herrero,1 and N. Gedik*1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States 2Institut für Theoretische Physik, Universität Bremen, P.O. Box 330 440, 28334 Bremen, Germany 3Department of Physics and Astronomy, University of California, Riverside, California 92521, United States 4Bremen Center for Computational Materials Science, Universität Bremen, 28334 Bremen, Germany 5Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan 6Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States *Corresponding Author: [email protected] Abstract: We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshift. Using both material-realistic computation and phenomenological modeling, we attribute this observation to plasma effects and an attraction-repulsion crossover of the exciton-exciton interaction that mimics the Lennard- Jones potential between atoms. Our experiment demonstrates a strong analogy between excitons and atoms with respect to inter-particle interaction, which holds promise to pursue the predicted liquid and crystalline phases of excitons in two-dimensional materials. Keywords: Monolayer WS2, exciton, plasma, Lennard-Jones potential, ultrafast optics, many- body theory Table of Contents Graphic Page 1 of 13 Main Text: Excitons in semiconductors are often perceived as the solid-state analogs to hydrogen atoms.
    [Show full text]
  • Gravitational Redshift/Blueshift of Light Emitted by Geodesic Test Particles
    Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer.
    [Show full text]
  • CMA-2012 Doppler Velocity Sensor and Navigation System
    CMA-2012 Doppler Velocity Sensor and Navigation System High Accuracy Velocity Sensor Ideally Suited for Helicopter Operations The CMA-2012 Doppler Velocity Sensor and The CMA-2012’s superior accuracy and performance are Navigation System represents the culmination achieved by integrating several technologies into one compact, of CMC Electronics’ 50 years of experience in low weight unit. A frequency modulation/continuous wave (FM/CW) modulation technique, together with a four-beam Janus airborne Doppler radar and navigation systems. It configuration, is optimized for low-speed conditions. A dynamic is particularly well suited for helicopter hover and carrier breakthrough circuit lowers hover drift. Signal returns then low-speed operations, such as anti-submarine undergo digital signal processing to optimize signal acquisition warfare and SAR, and for weapons targeting during over marginal terrain, such as smooth water, sand or snow, and tactical flight manoeuvres, where the highest enhance tracking precision accuracy. Pitch, roll and yaw heading accuracy velocity sensor is required to ensure inputs further enhance the CMA-2012’s performance during mission accomplishment. dynamic helicopter movements. With the input of pitch, roll and heading information, the CMA-2012 can provide Doppler navigation system functions, compute present position and other navigation information, and output navigation data to CMC’s or other multifunction CDUs via a digital data bus. Extensive flight testing of the CMA-2012 has demonstrated its excellent performance.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]