Vaccines to Prevent Cholera

Total Page:16

File Type:pdf, Size:1020Kb

Vaccines to Prevent Cholera Vaccines to Prevent Cholera MYRON M. LEVINE AND WILBUR H. CHEN 2 Vaccines to Prevent Cholera Vaccines to Prevent Cholera Myron M. Levine, M.D., D.T.P.H. Simon and Bessie Grollman Distinguished Professor; Associate Dean for Global Health, Vaccinology and Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD Wilbur H. Chen, M.D., M.S. Chief, Adult Clinical Studies Section, Center for Vaccine Development and Associate Professor of Medicine, University of Maryland School of Medicine, Baltimore, MD Introduction Cholera, the acute diarrheal disease caused by Vibrio cholerae serogroups O1 and occasionally O139, is of cardinal public health importance because of the severity of the clinical illness it can cause (“cholera gravis”, leading to death if untreated), its explosive epidemic behavior and its propensity to occur in extensive pandemics involving many countries over many years. The oral cholera vaccines that have become available in recent years are employed to dampen the intensity of seasonal disease in endemic areas, protect high risk populations such as refugees interned in camps in cholera-endemic or cholera-proximal areas, and protect travelers from cholera-free countries/regions who must travel to countries/regions where cholera is epidemic or endemic. The remaining potential use of cholera vaccines, arguably the most important, aims to control large explosive epidemics in immunologically-naïve populations (so called “virgin soil” epidemics) such as when cholera returned to South America in 1991 after a century of absence and the 2010 outbreak in Haiti that followed a devastating earthquake.1,2 Virgin soil epidemics severely strain the resources of national and local public health authorities and disrupt civil society. The control of such epidemics demands a vaccine that can confer a high level of protection upon immunologically-naïve persons within just a few days of administration of a single dose. One of the new vaccines has characteristics (single dose, protection as early as 8–10 days following vaccination) that may allow it to be amenable to the control of virgin soil epidemics,3 particularly when such epidemics accompany complex emergencies (earthquakes, floods, wars). Etiologic Agents Circa 206 O serogroups of V. cholerae are recognized but only two, O1 and O139, routinely express cholera enterotoxin and attachment pili and cause epidemic cholera.4 Within the O1 serogroup there are two main serotypes, Inaba and Ogawa; a third serotype, Hikojima, is rare. Serogroup O1 strains are also classified into two biotypes, classical or El Tor. Almost all cholera disease currently occurring in the world is due to variants of the El Tor biotype. Emerging El Tor variants have been identified that express classical biotype cholera enterotoxin and sometimes classical toxin co-regulated pili (TCP), the organelles by which V. cholerae attaches to enterocytes as a key step in the pathogenesis of cholera.5-8 These “El Tor hybrids” expressing classical enterotoxin may cause more severe clinical disease than bona fide El Tor strains.9 VACCINOLOGY IN LATIN AMERICA IN LATIN VACCINOLOGY Levine and Chen 3 Epidemiology The Ganges River delta in South Asia is the ancestral home of cholera where between pandemics it persists as “Asiatic cholera.” The seventh pandemic of cholera, due to V. cholerae O1 El Tor, originated in the early 1960s on the island of Sulawesi, Indonesia, and progressively spread in waves over the ensuing six decades to involve at one time or another almost all of the world’s developing and transitional countries;4 in many it has remained endemic in sub-populations and niches.4 Thus, cholera is now endemic in many countries of South and Southeast Asia, sub-Saharan Africa and a few countries in the Americas. During the early 1990s it was endemic for several years in Peru, Ecuador, and some other Latin American countries.10,11 When cholera invades new territory with immunologically-naive populations, the highest incidence of disease is observed in young adult males. If the disease becomes endemic, the incidence increases in women and children and eventually peak incidence is observed in young children. Cholera exhibits a seasonal pattern almost everywhere that it is endemic.12 When the new season begins, cholera cases emerge simultaneously in multiple geographically separate foci. This pattern has also been observed when cholera invades new territory. In 1991, when cholera re-invaded South America with an explosive and extensive epidemic in Peru, large outbreaks appeared almost simultaneously in three distinct cities spanning a 900-kilometer stretch of the Pacific Coast.12 The explosive increase of cases observed at the onset of many epidemics may be the consequence of hyperinfective vibrios released into water sources lacking vibriophages. Conversely, curtailment of the epidemic may be the consequence of an increased prevalence of lytic phages in the water.13,14 Reservoirs of Infection. Humans are the sole known natural host of V. cholerae O1 cholera disease and chronic carriers are rare.15,16 Thus, it was previously assumed that in endemic areas mild and asymptomatic infections served as the reservoir to maintain the disease until the next cholera season when conditions would once again favor enhanced transmission. However, epidemiologic observations in the 1970s refuted this assumption and ushered in a new understanding of cholera epidemiology that clarified much of the epidemiologic behavior that previously had been puzzling. Confirmation of a single case of cholera in Texas in 1973 in a fisherman caused by an unusual highly hemolytic El Tor Inaba strain,17 followed 5 years later by an outbreak of approximately two dozen cases of the identical strain in which poorly cooked seafood was incriminated as the vehicle,18 led to identification of an environmental focus of infection along the Gulf of Mexico coast of the U.S.A.19 This El Tor Inaba strain was found to constitute autochthonous flora of the brackish waters of Gulf estuaries, where it was associated with crustacea (shrimp, etc.) eaten as local seafood. Identification of a similar environmental focus of free-living enterotoxigenic V. cholerae O1 El Tor in Queensland, Australia, supports the hypothesis that brackish water environmental niches can serve as the reservoir of V. cholerae O1.20 V. cholerae can enter a “viable but nonculturable” state that allows them to survive harsh environmental conditions through a form of bacterial hibernation.16,21 When the toxigenic V. cholerae eventually encounter favorable conditions of temperature, salinity and pH, they can rejuvenate, regaining the potential to actively metabolize and grow.21 These may also be the conditions under which zooplankton blooms occur. Modes of Transmission. Our practical knowledge of the vehicles of transmission of cholera stems from case- control investigations that have documented waterborne transmission and an array of food vehicles.22,23 When El Tor cholera struck the Pacific coast of several Andean countries of South America in 1991, improperly functioning municipal water supplies and sewage systems, contaminated surface waters, and unsafe domestic water storage methods fostered facile waterborne cholera transmission.1,24 Beverages prepared with contaminated water and sold by street vendors, ice, and even commercial bottled water have been incriminated.25 4 Vaccines to Prevent Cholera V. cholerae O1 may be associated with seafood vehicles by means of their natural adherence to the chitinous exoskeletons of shrimp, crabs, and oysters in certain estuarine environments,18,21,26 or food may be secondarily contaminated during preparation or handling.27 The most commonly implicated food vehicle worldwide has been raw or undercooked seafood, including mussels, shrimps, oysters, clams, cockles, fish, salt fish, and ceviche (uncooked fish or shellfish marinated in lemon or lime juice). Cooked grains, rice and beans with sauces have also been incriminated in cholera transmission, particularly in Africa. A small inoculum of enterotoxigenic V. cholerae O1 introduced by an infected food handler into one of these types of food and stored without refrigeration can increase by several logs within 8 to 12 hours. Cholera has also been transmitted by vegetables and fruit irrigated with raw sewage or “freshened” by dousing with sewage-contaminated water.28 During outbreaks or seasonal epidemics, cholera may spread via multiple modes of transmission. Depending on local customs, climate, and other factors, particular modes and vehicles of transmission predominate.29 Finally, if pathogenic V. cholerae O1 and O139 persist in environmental reservoirs, then transmission across long distances can occur via the ballast water of large ships, as they intake ballast water in one port and discharge it prior to entering another port thousands of miles away.30 Epidemiologists recognize that person-to-person contact spread of cholera virtually never occurs. Transmission is essentially always via food or water vehicles. It has been hypothesized that for a few hours after being shed in enormous numbers by cholera patients purging rice water stools, toxigenic V. cholerae remain in a hyper-transmissible state.13,14,31 Thus, if a case of severe cholera occurs in a crowded setting where other susceptible human hosts and facile modes of transmission exist, the infectious dose may be unusually low and spread of disease may be explosive.13 Host Risk Factors. Certain host factors markedly increase the risk of
Recommended publications
  • Cholera Outbreak Caused by Drug Resistant Vibrio Cholerae Serogroup
    Gupta et al. Antimicrobial Resistance and Infection Control (2016) 5:23 DOI 10.1186/s13756-016-0122-7 RESEARCH Open Access Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study Pappu Kumar Gupta1, Narayan Dutt Pant2*, Ramkrishna Bhandari3 and Padma Shrestha1 Abstract Background: Cholera is a major cause of mortality and morbidity in underdeveloped countries including Nepal. Recently drug resistance in Vibrio cholerae has become a serious problem mainly in developing countries. The main objectives of our study were to investigate the occurrence of Vibrio cholerae in stool samples from patients with watery diarrhea and to determine the antimicrobial susceptibility patterns of V. cholerae isolates. Methods: A total of 116 stool samples from patients suffering from watery diarrhea during July to December 2012 were obtained from outbreak areas from all over Nepal. Alkaline peptone water and thiosulphate citrate bile salt sucrose agar (TCBS) were used to isolate the Vibrio cholerae. The isolates were identified with the help of colony morphology, Gram’s staining, conventional biochemical testing, serotyping and biotyping. Antimicrobial susceptibility testing was performed by determining the minimum inhibitory concentration (MIC) by agar dilution method. Results: Vibrio cholerae was isolated from 26.72 % of total samples. All isolated Vibrio cholerae were confirmed to be Vibrio cholerae serogoup O1 biotype El Tor and serotype Ogawa. All isolates were resistant to ampicillin and cotrimoxazole. Twenty nine isolates were resistant toward two different classes of antibiotics, one strain was resistant to three different classes of antibiotics and one strain was resistant to four different classes of antibiotics.
    [Show full text]
  • Cholera, Migration, and Global Health – a Critical Review
    Int J Travel Med Glob Health. 2018 Sep;6(3):92-99 doi 10.15171/ijtmgh.2018.19 J http://ijtmgh.com IInternationalTMGH Journal of Travel Medicine and Global Health Review Article Open Access Cholera, Migration, and Global Health – A Critical Review Niyi Awofeso1*, Kefah Aldabk1 1Hamdan Bin Mohammed Smart University, Dubai, UAE Corresponding Author: Niyi Awofeso, PhD, Professor, Hamdan Bin Mohammed Smart University, Dubai, UAE. Tel: +97-144241018, Email: [email protected] Received February 1, 2018; Accepted April 7, 2018; Online Published September 25, 2018 Abstract Cholera is an acute diarrheal infection caused by the ingestion of food or water contaminated with the bacterium Vibrio cholerae. The causative agent of this disease was originally described by Filippo Pacini in 1854, and afterwards further analyzed by Robert Koch in 1884. It is estimated that each year there are 1.3 million to 4 million cases of cholera, and 21 000 to 143 000 deaths worldwide from the disease. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. A global strategy on cholera control with a target to reduce cholera deaths by 90% was launched in 2017. Before 1817, cholera was confined to India’s Bay of Bengal. However, primarily following trade and migration between India and Europe, by the 1830s, cholera had spread internationally. The global spread of cholera was the driving force behind the first International Sanitary Conference in Paris, in 1851. The global health significance of cholera is underscored by its inclusion as one of four priority diseases in the 1969 and 2005 International Health Regulations.
    [Show full text]
  • And Gardasil
    Advisory Commission on Childhood Vaccines (ACCV) Food and Drug Administration Update March 4, 2021 CDR Valerie Marshall, MPH, PMP, GWCPM Immediate Office of the Director Office of Vaccines Research and Review (OVRR) Center for Biologics Evaluation and Research (CBER) Food and Drug Administration (FDA) 1 Emergency Use Authorization for Vaccines . An Emergency Use Authorization (EUA) is a mechanism to facilitate the availability and use of medical countermeasures, including vaccines, during public health emergencies, such as the current COVID-19 pandemic. Under an EUA, the FDA may allow the use of unapproved medical products to prevent serious or life-threatening diseases or conditions when certain statutory criteria have been met, including that there are no adequate, approved, and available alternatives. Taking into consideration input from the FDA, manufacturers decide whether and when to submit an EUA request to FDA. Once submitted, FDA will evaluate an EUA request and determine whether the relevant statutory criteria are met, and review the scientific evidence about the vaccine that is available to FDA. 2 Requirements for the EUA . FDA evaluated nonclinical, clinical, and manufacturing data submitted by a vaccine manufacturer. For an EUA to be issued for a vaccine: . Adequate manufacturing information ensures quality and consistency . Vaccine benefits outweigh its risk based on data from at least one well-designed Phase 3 clinical study that in a compelling manner demonstrates: . Safety . Efficacy 3 Continued monitoring of COVID-19 Vaccines Authorized by FDA . USG Systems: . Vaccine Adverse Event Reporting System (VAERS) . Vaccine Safety Datalink (VSD), . Biologics Effectiveness and Safety (BEST) Initiative . Medicare Claims Data 4 EUA of COVID-19 Vaccines • On December 11, 2020, the FDA issued the first emergency use authorization (EUA) for Pfizer’s COVID-19 Vaccine.
    [Show full text]
  • Technical Note the Use of Oral Cholera Vaccines for International Workers and Travelers to and from Cholera-Affected Countries November 2016
    Global Task Force on Cholera Control (GTFCC) Oral Cholera Vaccine Working Group Technical Note The Use of Oral Cholera Vaccines for International Workers and Travelers to and from Cholera-Affected Countries November 2016 Background Three Oral Cholera Vaccines (OCVs) are currently pre-qualified by WHO: Dukoral® – a vaccine used mainly by travelers that includes killed whole cells and a component of the cholera toxin – and Shanchol™ and Euvichol®, which contain only killed whole cells. All three vaccines have a two-dose regimen with an interval between doses of two weeks or more (three doses for Dukoral® in children aged 2–5 years). All also have a good safety profile. Shanchol™ and Euvichol® are have the same formulation and comparable safety and immunogenicity profiles and are reformulated versions of Dukoral®.1,2 Unlike Dukoral®, Shanchol™ and Euvichol® do not require a buffer to administer. Shanchol™ has demonstrated longer term protection – a rather stable 65 – 67% from Year 2 to Year 5,3,4,5 as compared to Dukoral®.6 Concerning short-term protection – of most relevance to travelers – Dukoral® has been shown to provide 79-86% for three to six months in a series of studies,4,7,8,9 while the single published study of the short-term effectiveness of Shanchol™ found a similar rate (87%) over six months.10 Dukoral® has been shown to also confer significant short-term protection against enterotoxigenic E. coli (ETEC).11 Purpose of the Technical Note Concern has been raised in the past several years about the risk of international workers and other travelers getting cholera while in an endemic country or a country affected by an outbreak.
    [Show full text]
  • Multiple Choice Questions on Immunisation Against Infectious Disease
    Multiple choice questions on immunisation against infectious disease The Green Book Original version issued February 2008 Updated version January 2020 Multiple choice questions on immunisation against infectious disease About Public Health England Public Health England exists to protect and improve the nation’s health and wellbeing and reduce health inequalities. We do this through world-leading science, research, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support. Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG Tel: 020 7654 8000 www.gov.uk/phe Twitter: @PHE_uk Facebook: www.facebook.com/PublicHealthEngland Prepared by Drs Amelia Cummins, David Irwin, Sally Millership and Sultan Salimee, Consultants in Communicable Disease Control For queries relating to this document, please contact: Health Protection Team, Second Floor, Goodman House, Station Approach, Harlow, Essex CM20 2ET, Tel: 0300 303 8537, Fax: 0300 303 8541 [email protected] © Crown copyright 2020 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified
    [Show full text]
  • Transition of Drug Susceptibilities of Vibrio Cholerae O1 in Lao People’S Democratic Republic
    DRUG SUSCEPTIBILITIES OF VIBRIO CHOLERAE O1 TRANSITION OF DRUG SUSCEPTIBILITIES OF VIBRIO CHOLERAE O1 IN LAO PEOPLE’S DEMOCRATIC REPUBLIC Bounnanh Phantouamath1, Noikaseumsy Sithivong1, Lay Sisavath1, Khamphyeu Munnalath1, Chomlasak Khampheng1, Sithat Insisiengmay1, Naomi Higa2, Shige Kakinohana2 and Masaaki Iwanaga2 1Center for Laboratory and Epidemiology, Ministry of Health, Vientiane, Lao PDR; 2Department of Bacteriology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan Abstract. The changes of drug susceptibilities of Vibrio cholerae O1 isolated during the past 7 years (1993-1999) in Lao PDR were investigated. The most noteworthy finding was the appearance of polymyxin B sensitive El Tor vibrios. Until 1996, the susceptibilities were almost as expected and cholera disappeared in 1997. When a cholera outbreak resurfaced in 1998, the susceptibilities of isolated V. cholerae O1 against tetracycline, sulfamethoxazol-trimethoprim, chloramphenicol and polymyxin B were quite different from those of previously isolated organ- isms. Minimum inhibitory concentrations (MICs) of tetracycline and chloramphenicol against the isolates in 1998 were about 16 times higher than those against the previous isolates, and the MICs of sulfamethoxazol-trimethoprim were about 256 times higher than those against the previous isolates, (trimethoprim 32 µg/ml: sulfamethoxazol 608 µg/ml). Eleven percent of the isolates (11/99) were as sensitive to polymyxin B as the classic cholera vibrios (MIC < 2 µg/ ml). In 1999, the susceptibility pattern was almost the same as that in 1998 except for polymyxin B to which 58% of the isolates (21/36) became sensitive. INTRODUCTION shown to shorten the duration to fewer days (Hischhorn et al, 1974). Since shortening of Vibrio cholerae Ol, the causative agent the symptomatic period is a positive merit of of cholera, are usually sensitive to therapeutic the antimicrobial treatment, the drug sensitiv- antimicrobials (Higa et al, 1995).
    [Show full text]
  • Optimizing Vaccine Allocation for COVID-19 Vaccines Shows The
    ARTICLE https://doi.org/10.1038/s41467-021-23761-1 OPEN Optimizing vaccine allocation for COVID-19 vaccines shows the potential role of single-dose vaccination ✉ Laura Matrajt 1 , Julia Eaton 2, Tiffany Leung 1, Dobromir Dimitrov1,3, Joshua T. Schiffer1,4,5, David A. Swan1 & Holly Janes1 1234567890():,; Most COVID-19 vaccines require two doses, however with limited vaccine supply, policy- makers are considering single-dose vaccination as an alternative strategy. Using a mathe- matical model combined with optimization algorithms, we determined optimal allocation strategies with one and two doses of vaccine under various degrees of viral transmission. Under low transmission, we show that the optimal allocation of vaccine vitally depends on the single-dose efficacy. With high single-dose efficacy, single-dose vaccination is optimal, preventing up to 22% more deaths than a strategy prioritizing two-dose vaccination for older adults. With low or moderate single-dose efficacy, mixed vaccination campaigns with com- plete coverage of older adults are optimal. However, with modest or high transmission, vaccinating older adults first with two doses is best, preventing up to 41% more deaths than a single-dose vaccination given across all adult populations. Our work suggests that it is imperative to determine the efficacy and durability of single-dose vaccines, as mixed or single-dose vaccination campaigns may have the potential to contain the pandemic much more quickly. 1 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 2 School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA, USA. 3 Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
    [Show full text]
  • History of Vaccination
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: History of vaccination Stanley Plotkin1 Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104 Edited by Rino Rappuoli, Novartis Vaccines, Siena, Italy, and approved February 5, 2014 (received for review January 13, 2014) Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before. killed vaccines | proteins | live vaccine | genetic engineering One of the brightest chapters in the history of in humans (7). This idea played a role in the varicella vaccines were all made possible science is the impact of vaccines on human development of bacillus Calmette–Guérin through selection of clones by cell-culture longevity and health. Over 300 y have elapsed but is even more obvious in the selection of passage in vitro (17–21). In essence, passage since the first vaccine was discovered. In rhesus and bovine rotavirus strains to aid in cell culture leads to adaptation to growth a short article, it is not possible to do justice the creation of human rotavirus vaccines as in that medium, and the mutants best capa- to a subject that encompasses immunology, mentioned below under Reassortment. bleofgrowthhaveoftenlostormodifiedthe molecular biology, and public health, but sev- It was Pasteur and his colleagues who most genes that allow them to infect and spread eral more extensive sources are available clearly formulated the idea of attenuation and within a human host.
    [Show full text]
  • Global Status of Tetracycline Resistance Among Clinical Isolates of Vibrio Cholerae: a Systematic Review and Meta‑Analysis Mohammad Hossein Ahmadi*
    Ahmadi Antimicrob Resist Infect Control (2021) 10:115 https://doi.org/10.1186/s13756-021-00985-w RESEARCH Open Access Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: a systematic review and meta-analysis Mohammad Hossein Ahmadi* Abstract Background: There has been an increasing resistance rate to tetracyclines, the frst line treatment for cholera disease caused by V. cholera strains, worldwide. The aim of the present study was to determine the global status of resistance to this class of antibiotic among V. cholera isolates. Methods: For the study, electronic databases were searched using the appropriate keywords including: ‘Vibrio’, ‘chol- era’, ‘Vibrio cholerae’, ‘V. cholerae’, ‘resistance’, ‘antibiotic resistance’, ‘antibiotic susceptibility’, ‘antimicrobial resistance’, ‘anti- microbial susceptibility’, ‘tetracycline’, and ‘doxycycline’. Finally, after some exclusion, 52 studies from diferent countries were selected and included in the study and meta-analysis was performed on the collected data. Results: The average resistance rate for serogroup O1 to tetracycline and doxycycline was 50% and 28%, respectively (95% CI). A high level of heterogeneity (I2 > 50%, p-value < 0.05) was observed in the studies representing resistance to tetracycline and doxycycline in O1 and non-O1, non-O139 serogroups. The Begg’s tests did not indicate the publica- tion bias (p-value > 0.05). However, the Egger’s tests showed some evidence of publication bias in the studies con- ducted on serogroup O1. Conclusions: The results of the present study show that the overall resistance to tetracyclines is relatively high and prevalent among V. cholerae isolates, throughout the world. This highlights the necessity of performing standard antimicrobial susceptibility testing prior to treatment choice along with monitoring and management of antibiotic resistance patterns of V.
    [Show full text]
  • An Update on Cholera Immunity and Current and Future Cholera Vaccines
    Tropical Medicine and Infectious Disease Article An Update on Cholera Immunity and Current and Future Cholera Vaccines Jan Holmgren University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; [email protected] Abstract: Individual resistance to cholera infection and disease depends on both innate host fac- tors and adaptive immunity acquired by a previous infection or vaccination. Locally produced, intestinal-mucosal secretory IgA (SIgA) antibodies against bacterial surface lipopolysaccharide (LPS) O antigens and/or secreted cholera toxins are responsible for the protective adaptive immunity, in conjunction with an effective mucosal immunologic memory that can elicit a rapid anamnestic SIgA antibody response upon re-exposure to the antigen/pathogen even many years later. Oral cholera vaccines (OCVs), based on inactivated Vibrio cholerae whole-cell components, either together with the cholera toxin B subunit (Dukoral™) or administered alone (Shanchol™/Euvichol-Plus™) were shown to be consistently safe and effective in large field trials in all settings. These OCVs are recommended by the World Health Organisation (WHO) for the control of both endemic cholera and epidemic cholera outbreaks. OCVs are now a cornerstone in WHO’s global strategy found in “Ending Cholera: A Global Roadmap to 2030.” However, the forecasted global demands for OCV, estimated by the Global Alliance for Vaccines and Immunization (GAVI) to 1.5 billion doses for the period 2020–2029, markedly exceed the existing manufacturing capacity. This calls for an increased production capacity of existing OCVs, as well as the rapid introduction of additional and improved vaccines under development. Citation: Holmgren, J. An Update on Keywords: cholera; oral cholera vaccine; mucosal immunity; cholera control Cholera Immunity and Current and Future Cholera Vaccines.
    [Show full text]
  • 1 Arizona Vaccine News Karen Lewis, M.D. Medical Director
    Arizona Vaccine News Karen Lewis, M.D. Medical Director Arizona Immunization Program Office April 12, 2021 Douglas A. Ducey | Governor Cara M. Christ | MD, MS, Director _____________________________________________________________________________________________ 150 North 18th Avenue, Suite 120, Phoenix, AZ 85007-3247 P | 602-364-3630 F | 602-364-3285 W | azdhs.gov Health and Wellness for all Arizonans Newsletter Topics COVID-19 VACCINATIONS • Vaccine Effectiveness of mRNA COVID-19 Vaccines in Healthcare Personnel • How Well Do COVID-19 Vaccines Protect Against Variants? • Delayed Local Reactions to mRNA COVID-19 Vaccine • Overcoming (COVID-19) Vaccine Hesitancy Through Understanding and Trust • Can Colleges and Universities Require Student COVID-19 Vaccination? • Insights for Future Pediatric COVID-19 Vaccine Campaigns • World Health Organization COVID-19 Vaccine Global Clinical Trials Tracker VACCINES AND VACCINE-PREVENTABLE DISEASES • Decrease in Childhood Vaccinations Amid COVID-19 Pandemic • Parental Hesitancy About Routine Childhood and Influenza Vaccinations • Influenza Vaccine Effective Against Pediatric Hospitalizations and Emergency Visits • No Increased Risk of Stillbirth in Pregnant Women who Received Influenza or Tdap Vaccines • Recent History of Measles Outbreaks in Arizona • Cost of a Large Measles Outbreak in the U.S. • Updated CDC Compilation of Meningococcal Vaccination Recommendations • Declines in 4vHPV Vaccine Type Infections Among Females after Introduction of HPV Vaccine • More Provider Recommendations for HPV Vaccine
    [Show full text]
  • First Responder Quick Guide
    FIRST RESPONDERS: What you need to know Protect yourself and your loved ones Vaccinations are a critical component of your preparation and training to respond to emergencies and disaster events. Being up-to-date on your immunizations will prevent severe illness or the spread of disease to others. Review this quick guide for answers to some common questions about adult vaccination and recommendations for first responders. Download the complete First Responder Immunization Toolkit. Do I really need vaccines? All adults need vaccines to help protect against serious diseases that can result in severe illness, missed work, medical bills and an inability to care for their families. Adults may not have received all their vaccines during childhood. Some childhood vaccines do not offer protection into adulthood and a booster may be needed. Some vaccines are recommended based on age, job, lifestyle, or health condition. Getting vaccinated lowers the risk of getting sick and lowers the chance of spreading a serious disease to others including those that are most vulnerable to severe illness such as infants, older adults, and those with chronic health conditions or weakened immune systems. How well do adult vaccines work? Vaccines work with the body’s natural defenses to reduce the chances of getting certain diseases and suffering from complications. The amount of protection varies by vaccine and other factors such as age and health but immunizations are the best defense against many serious, sometimes deadly, diseases. The greatest risk of vaccine-preventable diseases occurs among those that are not vaccinated. Are adult vaccines safe? Vaccines are one of the safest ways to protect health.
    [Show full text]