Gaussian integrals depending by a quantum parameter in finite dimension Simone Camosso∗ Abstract A common theme in mathematics is the evaluation of Gauss integrals. This, coupled with the fact that they are used in different branches of science, makes the topic always actual and interesting. In these notes we shall an- alyze a particular class of Gaussian integrals that depends by the quantum parameter ~. Starting from classical results, we will present an overview on methods, examples and analogies regarding the practice of solving quantum Gaussian integrals. Keywords. Gaussian integral, quantization, special functions, arithmetic– geometric mean, Grassmann number, Boys functions. AMS Subject Classification. 33B15, 00A05, 97I50, 81S10, 97I80, 92E10. Contents 1 Introduction 2 arXiv:2107.06874v1 [math.GM] 14 Jul 2021 2 The Gaussian integral in 1–dimension 3 2.1 WaystowritetheGaussianintegral. 7 2.2 GaussianintegralorGausstheorem? . 11 3 The Gaussian integral in n–dimensions 12 4 Gaussian integrals and homogeneous functions 14 ∗e-mail:
[email protected], Saluzzo (CN) 1 5 Gaussian matrix integrals 15 6 The symplectic structure 17 7 The quantum postulates 18 8 Gaussian integrals depending by a quantum parameter 19 9 Quantum integrals 23 10 On a Gaussian integral in one dimension and the Lemniscate 24 11 The Berezin–Gaussian integral: a generalization of the Gaus- sian integral 27 11.1 On the Laplace method and a “mixed Gaussian Integral” . 29 12 Quantum Gaussian integrals with a perturbative term 30 13 Gaussian integrals and the Boys integrals 31 Bibliography 34 1 Introduction Let ~ be a quantum parameter, an important practice in quantum mechanics, is the evaluation of Gaussian integrals.