Drug-Induced Hyperhidrosis and Hypohidrosis Incidence, Prevention and Management

Total Page:16

File Type:pdf, Size:1020Kb

Drug-Induced Hyperhidrosis and Hypohidrosis Incidence, Prevention and Management Drug Safety 2008; 31 (2): 109-126 REVIEW ARTICLE 0114-5916/08/0002-0109/$48.00/0 © 2008 Adis Data Information BV. All rights reserved. Drug-Induced Hyperhidrosis and Hypohidrosis Incidence, Prevention and Management William P. Cheshire Jr1 and Robert D. Fealey2 1 Department of Neurology, Autonomic Reflex Laboratory, Mayo Clinic, Jacksonville, Florida, USA 2 Department of Neurology, Thermoregulatory Sweating Laboratory, Mayo Clinic, Rochester, Minnesota, USA Contents Abstract ....................................................................................109 1. Clinical Importance ......................................................................110 1.1 Hyperhidrosis ........................................................................110 1.2 Hypohidrosis .........................................................................111 2. Sites of Drug Action ......................................................................112 3. Drug-Induced Hyperhidrosis ...............................................................114 3.1 Anticholinesterases ..................................................................114 3.2 Antidepressants......................................................................114 3.3 Antiglaucoma Agents ................................................................115 3.4 Bladder Stimulants ...................................................................115 3.5 Drugs for Dementia ..................................................................115 3.6 Opioids .............................................................................115 3.7 Sialogogues .........................................................................116 3.8 Rebound Effects .....................................................................116 4. Drug-Induced Hypohidrosis ...............................................................116 4.1 Anticholinergics .....................................................................116 4.2 Antidepressants......................................................................118 4.3 Antiepileptics ........................................................................118 4.4 Antihistamines .......................................................................118 4.5 Antihypertensives ....................................................................119 4.6 Antipsychotics and Antiemetics .......................................................119 4.7 Botulinum Toxins .....................................................................119 4.8 Ganglionic Antagonists ...............................................................119 4.9 Intoxication .........................................................................119 5. Measurement of Hypohidrosis .............................................................120 6. Management of Hyperhidrosis .............................................................120 7. Management of Hypohidrosis .............................................................122 8. Conclusion ..............................................................................123 Abstract The human sweating response is subject to the influence of diverse classes of drugs. Some act centrally at the hypothalamus or at spinal thermoregulatory centres, while others act at sympathetic ganglia or at the eccrine-neuroeffector junction. Pharmacological disturbances of sweating have broad clinical implica- 110 Cheshire & Fealey tions. Drugs that induce hyperhidrosis, or sweating in excess of that needed to maintain thermoregulation, can cause patient discomfort and embarrassment, and include cholinesterase inhibitors, selective serotonin reuptake inhibitors, opioids and tricyclic antidepressants. Drugs that induce hypohidrosis, or deficient sweat- ing, can increase the risk of heat exhaustion or heat stroke and include antimus- carinic anticholinergic agents, carbonic anhydrase inhibitors and tricyclic antidepressants. As acetylcholine is the principal neuroeccrine mediator, anhidrosis is one of the clinical hallmarks by which acute anticholinergic toxicity may be recognized. The symptom of dry mouth often accompanies the less apparent symptom of hypohidrosis because the muscarinic M3 acetylcholine receptor type predominates at both sweat and salivary glands. Management options include dose reduction, drug substitution or discontinuation. When com- pelling medical indications require continuation of a drug causing hyperhidrosis, the addition of a pharmacological agent to suppress sweating can help to reduce symptoms. When hypohidrotic drugs must be continued, deficient sweating can be managed by avoiding situations of heat stress and cooling the skin with externally applied water. The availability of clinical tests for the assessment of sudomotor dysfunction in neurological disease has enhanced recognition of the complex effects of drugs on sweating. Advances in the understanding of drug- induced anhidrosis have also enlarged the therapeutic repertoire of effective treatments for hyperhidrosis. Sweating is the principal means of thermoregula- 1.1 Hyperhidrosis tory heat dissipation in response to heat stress in humans. Although numerous drugs can influence Hyperhidrosis refers to sweating in excess of that the sweating response, very few studies have evalu- needed to maintain a constant body temperature. ated the effects of medications specifically on sweat Under normal conditions, when increased metabolic production. activity or exposure to high ambient temperatures It is important to consider the potential role of raises the internal temperature of the body beyond sweat-promoting drugs in patients who complain of the range of physiological tolerance, the sympathet- unpleasant increased sweating, or of sweat-inhib- ic nervous system responds with a coordinated set of iting drugs in patients who present with hyperther- reflexes resulting in vasodilatation, hyperpnoea and mia or heat-related illness. In patients without symp- generalized sweating.[1-3] In this way, evaporative toms of altered sweating, it is also important to heat loss lowers body temperature to restore thermal consider the potential effects of drugs when clinical normality and maintain homeostasis. tests of sweat function are undertaken in an auto- Sweating in excess of thermoregulatory need or nomic laboratory for the purpose of evaluating auto- that occurs during routine daily activities usually nomic disorders or detecting small fibre neuro- does not lead to hypothermia but can be quite un- pathies. Knowledge of the effects of drugs on sweat- comfortable and socially embarrassing to the pa- ing is also useful in managing the patient with a tient. In these patients, generalized sweating may sweating disorder. occur at a lowered threshold with excessive loss of 1. Clinical Importance body fluids resulting in the potential for dehydration or electrolyte depletion. A number of common The clinical importance of sweating falls into two medications occasionally cause hyperhidrosis (table distinct categories, hyperhidrosis and hypohidrosis. I). © 2008 Adis Data Information BV. All rights reserved. Drug Safety 2008; 31 (2) Drug-Induced Hyperhidrosis and Hypohidrosis 111 Table I. Drugs that can cause hyperhidrosis Drug Class Common examples Mechanism Anticholinesterases Pyridostigmine Cholinesterase inhibition Antidepressants: selective serotonin reuptake Citalopram Serotonergic effect on hypothalamus or spinal cord inhibitors Duloxetine Escitalopram Fluoxetine Fluvoxamine Mirtazapine Paroxetine Trazodone Venlafaxine Antidepressants: tricyclics Amitriptyline Norepinephrine reuptake inhibition with stimulation of Desipramine peripheral adrenergic receptors Doxepin Imipramine Nortriptyline Protriptyline Antiglaucoma agents Physostigmine Physostigmine = cholinesterase inhibition Pilocarpine Pilocarpine = muscarinic receptor agonism Bladder stimulants Bethanechol Muscarinic receptor agonism Opioids Fentanyl Histamine release Hydrocodone Methadone Morphine Oxycodone Sialogogues Cevimeline Muscarinic receptor agonism Pilocarpine A US survey estimated the prevalence of hyper- temperature in conditions of strenuous physical ac- hidrosis in the general population at 2.8% but did tivity or in hot environments. When evaporative not assess whether, or to what degree, drugs might cooling is impaired, heat stress is more likely to lead have contributed.[4] Although the incidence of drug- to hyperthermia, heat exhaustion or heat stroke. induced hyperhidrosis is unknown, it is probably Core temperatures in excess of 38–40°C are not only less than that of essential hyperhidrosis. unpleasant for the patient but, if sustained, can cause There is no evidence that drugs that promote cellular dysfunction or death. The brain is especially sweating facilitate acclimatization to high ambient vulnerable to hyperthermia, and summer heat waves [5] temperatures or enhance the thermoregulatory ef- have taken the lives of large numbers of people.[7] ficiency of sweating during exercise.[6] Most patients remain unaware of hypohidrosis unless it renders them heat intolerant, in which case 1.2 Hypohidrosis they are less likely to notice the absence of sweating The second category is hypohidrosis, or de- than the positive symptoms of flushing, dizziness, creased sweating in response to a proportionate ther- exhaustion, dyspnoea and mild confusion resulting mal or pharmacological stimulus. Its complete form from overheating. Any drug that suppresses the pa- is termed anhidrosis, or the absence of sweating. tient’s ability
Recommended publications
  • Table 2. 2012 AGS Beers Criteria for Potentially
    Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May
    [Show full text]
  • Appendix A: Potentially Inappropriate Prescriptions (Pips) for Older People (Modified from ‘STOPP/START 2’ O’Mahony Et Al 2014)
    Appendix A: Potentially Inappropriate Prescriptions (PIPs) for older people (modified from ‘STOPP/START 2’ O’Mahony et al 2014) Consider holding (or deprescribing - consult with patient): 1. Any drug prescribed without an evidence-based clinical indication 2. Any drug prescribed beyond the recommended duration, where well-defined 3. Any duplicate drug class (optimise monotherapy) Avoid hazardous combinations e.g.: 1. The Triple Whammy: NSAID + ACE/ARB + diuretic in all ≥ 65 year olds (NHS Scotland 2015) 2. Sick Day Rules drugs: Metformin or ACEi/ARB or a diuretic or NSAID in ≥ 65 year olds presenting with dehydration and/or acute kidney injury (AKI) (NHS Scotland 2015) 3. Anticholinergic Burden (ACB): Any additional medicine with anticholinergic properties when already on an Anticholinergic/antimuscarinic (listed overleaf) in > 65 year olds (risk of falls, increased anticholinergic toxicity: confusion, agitation, acute glaucoma, urinary retention, constipation). The following are known to contribute to the ACB: Amantadine Antidepressants, tricyclic: Amitriptyline, Clomipramine, Dosulepin, Doxepin, Imipramine, Nortriptyline, Trimipramine and SSRIs: Fluoxetine, Paroxetine Antihistamines, first generation (sedating): Clemastine, Chlorphenamine, Cyproheptadine, Diphenhydramine/-hydrinate, Hydroxyzine, Promethazine; also Cetirizine, Loratidine Antipsychotics: especially Clozapine, Fluphenazine, Haloperidol, Olanzepine, and phenothiazines e.g. Prochlorperazine, Trifluoperazine Baclofen Carbamazepine Disopyramide Loperamide Oxcarbazepine Pethidine
    [Show full text]
  • An Approach to the Patient with a Dry Mouth
    MedicineToday 2014; 15(4): 30-37 PEER REVIEWED FEATURE 2 CPD POINTS An approach to the patient with a dry mouth Key points • The subjective complaint of ELHAM AFLAKI MD; TAHEREH ERFANI MD; NICHOLAS MANOLIOS MB BS(Hons), PhD, MD, FRACP, FRCPA; xerostomia needs to be MARK SCHIFTER FFD, RCSI(Oral Med), FRACDS(Oral Med) differentiated from true salivary hypofunction. Dry mouth is a common and disabling problem. After exclusion of treatable • Salivary hypofunction can significantly reduce quality causes, treatment is symptomatic to prevent the consequences of salivary of life through its adverse hypofunction, such as tooth decay and infection of the oral mucosa. effects on taste, mastication, swallowing, cleansing of the erostomia, or the subjective feeling of neuropathic-induced orofacial dysaesthesia) mouth, killing of microbes a dry mouth, is a common complaint. and psychological and psychiatric disorders, and speech. It is often a consequence of salivary such as anxiety and depression. • Salivary hypofunction is a hypofunction (hyposalivation), in substantive risk factor for X which there is objective evidence of reduced NORMAL SALIVA PRODUCTION dental caries, oral mucosal salivary output or qualitative changes in saliva. Under normal physiological conditions, the disease and infection, Typically, patients complain of oral dryness salivary glands produce 1000 to 1500 mL of particularly oral candidiasis. only when salivary secretion is reduced by more saliva daily as an ultrafiltrate from the circu- • Patients should be than half.1 As saliva has a crucial role in taste lating plasma. Therefore, simple dehydration investigated for contributory perception, mastication, swallowing, cleansing reduces saliva production. The parotid glands and underlying causes, of the mouth, killing of microbes and speech, are the major source of serous saliva (60 to 65% which include drugs and abnormalities in saliva production can signif- of total saliva volume), producing the stimu- rheumatological diseases.
    [Show full text]
  • Diagnosis and Treatment of Multiple System Atrophy: an Update
    ReviewSection Article Diagnosis and Treatment of Multiple System Atrophy: an Update Abstract the common parkinsonian variant (MSA-P) from PD. In his review provides an update on the diagnosis a clinicopathologic study1, primary neurologists (who Tand therapy of multiple system atrophy (MSA), a followed up the patients clinically) identified only 25% of sporadic neurodegenerative disorder characterised MSA patients at the first visit (42 months after disease clinically by any combination of parkinsonian, auto- onset) and even at their last neurological follow-up (74 nomic, cerebellar or pyramidal symptoms and signs months after disease onset), half of the patients were still and pathologically by cell loss, gliosis and glial cyto- misdiagnosed with the correct diagnosis in the other half plasmic inclusions in several brain and spinal cord being established on average 4 years after disease onset. structures. The term MSA was introduced in 1969 Mean rater sensitivity for movement disorder specialists although prior to this cases of MSA were reported was higher but still suboptimal at the first (56%) and last Gregor Wenning obtained an MD at the under the rubrics of striatonigral degeneration, olivo- (69%) visit. In 1998 an International Consensus University of Münster pontocerebellar atrophy, Shy-Drager syndrome and Conference promoted by the American Academy of (Germany) in 1991 and idiopathic orthostatic hypotension. In the late Neurology was convened to develop new and optimised a PhD at the University nineties, |-synuclein immunostaining was recognised criteria for a clinical diagnosis of MSA2, which are now of London in 1996. He received his neurology as the most sensitive marker of inclusion pathology in widely used by neurologists.
    [Show full text]
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Anthem Blue Cross Drug Formulary
    Erythromycin/Sulfisoxazole (generic) INTRODUCTION Penicillins ...................................................................... Anthem Blue Cross uses a formulary Amoxicillin (generic) (preferred list of drugs) to help your doctor Amoxicillin/Clavulanate (generic/Augmentin make prescribing decisions. This list of drugs chew/XR) is updated quarterly, by a committee Ampicillin (generic) consisting of doctors and pharmacists, so that Dicloxacillin (generic) the list includes drugs that are safe and Penicillin (generic) effective in the treatment of diseases. If you Quinolones ..................................................................... have any questions about the accessibility of Ciprofloxacin/XR (generic) your medication, please call the phone number Levofloxacin (Levaquin) listed on the back of your Anthem Blue Cross Sulfonamides ................................................................ member identification card. Erythromycin/Sulfisoxazole (generic) In most cases, if your physician has Sulfamethoxazole/Trimethoprim (generic) determined that it is medically necessary for Sulfisoxazole (generic) you to receive a brand name drug or a drug Tetracyclines .................................................................. that is not on our list, your physician may Doxycycline hyclate (generic) indicate “Dispense as Written” or “Do Not Minocycline (generic) Substitute” on your prescription to ensure Tetracycline (generic) access to the medication through our network ANTIFUNGAL AGENTS (ORAL) _________________ of community
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Anticholinergic Drugs Improve Symptoms but Increase Dry Mouth in Adults with Overactive Bladder Syndrome
    Source of funding: Evid Based Nurs: first published as 10.1136/ebn.6.2.49 on 1 April 2003. Downloaded from Review: anticholinergic drugs improve symptoms but Health Research Council of Aotearoa increase dry mouth in adults with overactive bladder New Zealand. syndrome For correspondence: Jean Hay-Smith, Hay-Smith J, Herbison P,Ellis G, et al. Anticholinergic drugs versus placebo for overactive bladder syndrome in adults. Dunedin School of Cochrane Database Syst Rev 2002;(3):CD003781 (latest version May 29 2002). Medicine, University of Otago, Dunedin, New QUESTION: What are the effects of anticholinergic drugs in adults with overactive Zealand. jean.hay-smith@ bladder syndrome? otago.ac.nz Data sources Parallel arm studies of anticholinergic drugs v placebo for overactive bladder syndrome in Studies were identified by searching the Cochrane adults at 12 days to 12 weeks* Incontinence Group trials register (to January 2002) Weighted event rates and reference lists of relevant papers. Anticholinergic Study selection Outcomes drugs Placebo RBI (95% CI) NNT (CI) Randomised or quasi-randomised controlled trials in Self reported cure or adults with symptomatic diagnosis of overactive bladder improvement (8 studies) 63% 45% 41% (29 to 54) 6 (5 to 8) syndrome, urodynamic diagnosis of detrusor overactiv- RRI (CI) NNH (CI) ity, or both, that compared an anticholinergic drug Dry mouth (20 studies) 36% 15% 138 (70 to 232) 5 (4 to 7) (given to decrease symptoms of overactive bladder) with Outcomes Weighted mean difference (CI) placebo or no treatment. Studies of darifenacin, emepronium bromide or carrageenate, dicyclomine Number of leakage episodes in 24 hours (9 − chloride, oxybutynin chloride, propiverine, propanthe- studies) 0.56 (–0.73 to –0.39) Number of micturitions in 24 hours (8 studies) −0.59 (–0.83 to –0.36) line bromide, tolterodine, and trospium chloride were Maximum cystometric volume (ml) (12 studies) 54.3 (43.0 to 65.7) included.
    [Show full text]
  • Pain Management 101
    PAIN MANAGEMENT 101 By: Vicki McCulloch RN, NP & DeAnna Looper RN, CHPN, CHPCA Expect more from us. We do. Objectives • Identify a step-wise approach to pain management. • Identify the WHO Pain Ladder. • Identify non-pharmacological pain control measures. • Identify adjuvant treatment measures. • Identify common myths and truths • Identify common side effects and treatment options. Expect more from us. We do. Pain Management Principles • Use Multi-Treatment and Multi-Discipline Approach • Combine opioids with non-opioid medications • Non-pharmaceutical approaches • Include family and caregiver in planning • Include the patient! • Coordinate with facility • Coordinate with all providers- • Primary Care Provider • Nursing Home Physician • Hospice IDG Members Expect more from us. We do. Utilize the WHO Ladder World Health Organization • (WHO) “analgesic ladder” • Follow the steps as indicated. • Determine if adjuvants are necessary. Expect more from us. We do. WHO Pain Ladder STEP 3 “Strong” opioid for severe pain +/- non-opioid +/- adjuvant STEP 2 “Mild” opioid for mild- moderate pain +/- non- opioid +/- adjuvant STEP 1 Non-opioid + / - adjuvant Expect more from us. We do. Step 1-Mild Pain NON-OPIOID MEDICATION OPTIONS • Acetaminophen (Tylenol)-(Paracetamol)-(Panadol) • Non-steroidal anti-inflammatory drugs (NSAIDs) Traditional NSAIDS Ibuprofen-(Motrin) Aspirin-(Bayer) Naproxen- (Aleve) Nabumetone-(Relafen) Cox-2 Inhibitors Celecoxib-(Celebrex) Rofecoxib-(Vioxx) Valdecoxib-(Bextra) Expect more from us. We do. Adjuvants • Antidepressants
    [Show full text]
  • Pilocarpine (Systemic) | Memorial Sloan Kettering Cancer Center
    PATIENT & CAREGIVER EDUCATION Pilocarpine (Systemic) This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: US Salagen Brand Names: Canada JAMP Pilocarpine; M-Pilocarpine; Salagen What is this drug used for? It is used to treat dry mouth. What do I need to tell my doctor BEFORE I take this drug? If you have an allergy to pilocarpine or any other part of this drug. If you are allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell your doctor about the allergy and what signs you had. If you have any of these health problems: Asthma, glaucoma, liver disease, or swelling in parts of the eye. If you are breast-feeding or plan to breast-feed. This is not a list of all drugs or health problems that interact with this drug. Tell your doctor and pharmacist about all of your drugs (prescription or OTC, natural products, vitamins) and health problems. You must check to make sure Pilocarpine (Systemic) 1/6 that it is safe for you to take this drug with all of your drugs and health problems. Do not start, stop, or change the dose of any drug without checking with your doctor. What are some things I need to know or do while I take this drug? Tell all of your health care providers that you take this drug. This includes your doctors, nurses, pharmacists, and dentists.
    [Show full text]
  • Drugs to Avoid in Patients with Dementia
    Detail-Document #240510 -This Detail-Document accompanies the related article published in- PHARMACIST’S LETTER / PRESCRIBER’S LETTER May 2008 ~ Volume 24 ~ Number 240510 Drugs To Avoid in Patients with Dementia Elderly people with dementia often tolerate drugs less favorably than healthy older adults. Reasons include increased sensitivity to certain side effects, difficulty with adhering to drug regimens, and decreased ability to recognize and report adverse events. Elderly adults with dementia are also more prone than healthy older persons to develop drug-induced cognitive impairment.1 Medications with strong anticholinergic (AC) side effects, such as sedating antihistamines, are well- known for causing acute cognitive impairment in people with dementia.1-3 Anticholinergic-like effects, such as urinary retention and dry mouth, have also been identified in drugs not typically associated with major AC side effects (e.g., narcotics, benzodiazepines).3 These drugs are also important causes of acute confusional states. Factors that may determine whether a patient will develop cognitive impairment when exposed to ACs include: 1) total AC load (determined by number of AC drugs and dose of agents utilized), 2) baseline cognitive function, and 3) individual patient pharmacodynamic and pharmacokinetic features (e.g., renal/hepatic function).1 Evidence suggests that impairment of cholinergic transmission plays a key role in the development of Alzheimer’s dementia. Thus, the development of the cholinesterase inhibitors (CIs). When used appropriately, the CIs (donepezil [Aricept], rivastigmine [Exelon], and galantamine [Razadyne, Reminyl in Canada]) may slow the decline of cognitive and functional impairment in people with dementia. In order to achieve maximum therapeutic effect, they ideally should not be used in combination with ACs, agents known to have an opposing mechanism of action.1,2 Roe et al studied AC use in 836 elderly patients.1 Use of ACs was found to be greater in patients with probable dementia than healthy older adults (33% vs.
    [Show full text]
  • Solifenacin Succinate Tablets PI
    465mm (18.31”) 32mm (1.26”) HIGHLIGHTS OF PRESCRIBING • Gastrointestinal Disorders: Use with 3 DOSAGE FORMS AND STRENGTHS Table 1. Percentages of Patients With Identified Adverse Reactions, Derived From Multiple dose studies of solifenacin succinate in elderly volunteers (65 to 80 years) FDA Approved Patient Labeling FDA Approved Patient Labeling INFORMATION caution in patients with decreased Solifenacin succinate tablets are available as follows: All Adverse Events Exceeding Placebo Rate and Reported by 1% or More Patients showed that Cmax, AUC and t1/2 values were 20 to 25% higher as compared to the These highlights do not include gastrointestinal motility (5.3) 5 mg – white, round, standard, normal convex, film-coated, unscored tablets, debossed for Combined Pivotal Studies younger volunteers (18 to 55 years). Solifenacin Succinate Tablets Solifenacin Succinate Tablets all the information needed to • Central Nervous System Effects: with “TV” on one side of the tablet and with “2N” on the other side of the tablet. Placebo Solifenacin Succinate Solifenacin Succinate 8.6 Renal Impairment Read the Patient Information that comes with Read the Patient Information that comes with use SOLIFENACIN SUCCINATE Somnolence has been reported with 10 mg – light-pink to pink, round, standard, normal convex, film-coated, unscored (%) 5 mg (%) 10 mg (%) Solifenacin succinate should be used with caution in patients with renal impairment. TABLETS safely and effectively. solifenacin succinate tablets before you start solifenacin succinate tablets before you start solifenacin succinate. Advise patients not tablets, debossed with “TV” on one side of the tablet and with “3N” on the other side Number of Patients 1216 578 1233 There is a 2.1 fold increase in AUC and 1.6 fold increase in t1/2 of solifenacin in patients See full prescribing information for to drive or operate heavy machinery until of the tablet.
    [Show full text]