(NCCN Guidelines®) Survivorship

Total Page:16

File Type:pdf, Size:1020Kb

(NCCN Guidelines®) Survivorship NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Survivorship Version 3.2017 — February 16, 2018 NCCN.org Continue 3.2017, 02/16/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®. Printed by Anton Kabakov on 3/5/2018 7:06:43 AM. For personal use only. Not approved for distribution. Copyright © 2018 National Comprehensive Cancer Network, Inc., All Rights Reserved. NCCN Guidelines Version 3.2017 Panel Members NCCN Guidelines Index Table of Contents Survivorship Discussion *Crystal S. Denlinger, MD/Chair † Melissa Hudson, MD € ‡ † * Jose G. Montoya, MD Paula Silverman, MD † Fox Chase Cancer Center St. Jude Children's Research Hospital/ Stanford Cancer Institute Case Comprehensive Cancer The University of Tennessee Health Center/University Hospitals *Tara Sanft, MD/Vice-Chair † Þ Science Center Kathi Mooney, RN, PhD # † Seidman Cancer Center and Yale Cancer Center/ Huntsman Cancer Institute Cleveland Clinic Taussig Smilow Cancer Hospital Nazanin Khakpour, MD ¶ at the University of Utah Cancer Institute Moffitt Cancer Center K. Scott Baker, MD, MS € ξ * Javid J. Moslehi, MD λ Þ Sophia Smith, PhD, MSW £ ψ Fred Hutchinson Cancer Research Allison King, MD € ‡ † Vanderbilt-Ingram Cancer Center Duke Cancer Institute Center/Seattle Cancer Care Alliance Siteman Cancer Center at Barnes- Jewish Hospital and Washington Tracey O’Connor, MD † * Karen L. Syrjala, PhD £ Shrujal Baxi, MD † University School of Medicine Roswell Park Cancer Institute Fred Hutchinson Cancer Memorial Sloan Kettering Cancer Center Research Center/Seattle Divya Koura, MD ‡ Linda Overholser, MD, MPH Þ Cancer Care Alliance *Gregory Broderick, MD UC San Diego Moores Cancer Center University of Colorado Cancer Center Mayo Clinic Cancer Center Amye Tevaarwerk, MD ‡ Robin M. Lally, PhD, RN, MS * Electra D. Paskett, PhD ɛ University of Wisconsin The Ohio State University Wendy Demark-Wahnefried, PhD, RD ≅ Fred & Pamela Buffett Cancer Center Carbone Cancer Center Comprehensive Cancer Center - University of Alabama at Birmingham Terry S. Langbaum, MAS ¥ James Cancer Hospital and Comprehensive Cancer Center * Susan G. Urba, MD † £ The Sidney Kimmel Comprehensive Solove Research Institute University of Michigan Cancer Center at Johns Hopkins Comprehensive Cancer Center Debra L. Friedman, MD, MS € ‡ † Jeffrey Peppercorn, MD, MPH † Vanderbilt-Ingram Cancer Center Allison McDonough, MD Massachusetts General Hospital Mark T. Wakabayashi, MD, MPH Ω Dana-Farber/Brigham and Women's * City of Hope Mindy Goldman, MD Ω Cancer Center M. Alma Rodriguez, MD ‡ † Þ Comprehensive Cancer Center UCSF Helen Diller Family The University of Texas Comprehensive Cancer Center Michelle Melisko, MD † £ MD Anderson Cancer Center * Phyllis Zee, MD ψ UCSF Helen Diller Family Robert H. Lurie Comprehensive Comprehensive Cancer Center Kathryn J. Ruddy, MD, MPH ‡ † Cancer Center of Northwestern Mayo Clinic Cancer Center University NCCN Deborah Freedman-Cass, PhD Nicole McMillian, MS ξ Bone marrow transplantation # Nursing Cardiology ≅ Nutrition science/Dietitian ɛ Epidemiology ¥ Patient advocacy Π Exercise/Physiology € Pediatric oncology Ω Gynecology/Gynecologic oncology Psychiatry, psychology, including health behavior ‡ Hematology/Hematology oncology Continue £ Supportive care including palliative, pain management, Infectious diseases pastoral care, and oncology social work Þ Internal medicine ¶ Surgery/Surgical oncology † Medical oncology Urology ψ Neurology/Neuro-oncology NCCN Guidelines Panel Disclosures * Discussion Section Writing Committee 3.2017, 02/16/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®. Printed by Anton Kabakov on 3/5/2018 7:06:43 AM. For personal use only. Not approved for distribution. Copyright © 2018 National Comprehensive Cancer Network, Inc., All Rights Reserved. NCCN Guidelines Version 3.2017 Sub-Committees NCCN Guidelines Index Table of Contents Survivorship Discussion Anthracycline-Induced Cardiac Toxicity Anxiety and Depression Cognitive Function Javid J. Moslehi, MD/Lead Þ Karen L. Syrjala, PhD/Lead £ K. Scott Baker, MD, MS € ξ Vanderbilt-Ingram Cancer Center Fred Hutchinson Cancer Research Fred Hutchinson Cancer Center/Seattle Cancer Care Alliance Research Center/Seattle Cancer K. Scott Baker, MD, MS € ξ Care Alliance Fred Hutchinson Cancer Research Crystal Denlinger, MD † Center/ Fox Chase Cancer Center Debra L. Friedman, MD, MS € ‡ † Seattle Cancer Care Alliance Vanderbilt-Ingram Cancer Center Robin M. Lally, PhD, RN, MS Crystal S. Denlinger, MD/Chair † Fred & Pamela Buffett Cancer Center Allison King, MD € ψ ‡ † Fox Chase Cancer Center Siteman Cancer Center at Barnes- Terry S. Langbaum, MAS ¥ Jewish Hospital and Washington Melissa Hudson, MD € ‡ † The Sidney Kimmel Comprehensive University School of Medicine St. Jude Children's Research Hospital/ Cancer Center at Johns Hopkins The University of Tennessee Health Michelle Melisko, MD † £ Science Center Kathi Mooney, RN, PhD # † UCSF Helen Diller Family Huntsman Cancer Institute Comprehensive Cancer Center Divya Koura, MD ‡ at the University of Utah UC San Diego Moores Cancer Center Jeffrey Peppercorn, MD, MPH † Sophia Smith, PhD, MSW £ Massachusetts General Hospital Linda Overholser, MD, MPH Þ Duke Cancer Institute University of Colorado Cancer Center Kathryn J. Ruddy, MD, MPH ‡ † Mayo Clinic Cancer Center Continue NCCN Guidelines Panel Disclosures 3.2017, 02/16/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®. Printed by Anton Kabakov on 3/5/2018 7:06:43 AM. For personal use only. Not approved for distribution. Copyright © 2018 National Comprehensive Cancer Network, Inc., All Rights Reserved. NCCN Guidelines Version 3.2017 Sub-Committees NCCN Guidelines Index Table of Contents Survivorship Discussion Fatigue Lymphedema Menopause-Related Symptoms Debra L. Friedman, MD, MS € ‡ † Electra D. Paskett, PhD ɛ/Lead Mindy Goldman, MD/Lead Ω Vanderbilt-Ingram Cancer Center The Ohio State University UCSF Helen Diller Family Comprehensive Cancer Center - Comprehensive Cancer Center Allison McDonough, MD James Cancer Hospital and Dana-Farber/Brigham and Women's Solove Research Institute Gregory Broderick, MD Cancer Center Mayo Clinic Cancer Center Shrujal Baxi, MD † Michelle Melisko, MD † £ Memorial Sloan Kettering Cancer Michelle Melisko, MD † £ UCSF Helen Diller Family Center UCSF Helen Diller Family Comprehensive Cancer Center Comprehensive Cancer Center Nazanin Khakpour, MD ¶ Kathi Mooney, RN, PhD # Moffitt Cancer Center Tracey O’Connor, MD † Huntsman Cancer Institute Roswell Park Cancer Institute at the University of Utah Tracey O’Connor, MD † Roswell Park Cancer Institute Electra D. Paskett, PhD ɛ Tracey O’Connor, MD † The Ohio State University Roswell Park Cancer Institute Paula Silverman, MD † Comprehensive Cancer Center - Case Comprehensive Cancer James Cancer Hospital and Tara Sanft, MD † Center/University Hospitals Solove Research Institute Yale Cancer Center/ Seidman Cancer Center and Smilow Cancer Hospital Cleveland Clinic Taussig Paula Silverman, MD † Cancer Institute Case Comprehensive Cancer Pain Center/University Hospitals Susan G. Urba, MD/Lead † £ Seidman Cancer Center and University of Michigan Comprehensive Cancer Center Cleveland Clinic Taussig Cancer Institute Debra L. Friedman, MD, MS € ‡ † Vanderbilt-Ingram Cancer Center Amye Tevaarwerk, MD ‡ University of Wisconsin Karen L. Syrjala, PhD £ Fred Hutchinson Cancer Research Carbone Cancer Center Center/ Seattle Cancer Care Alliance Amye Tevaarwerk, MD ‡ Continue University of Wisconsin Carbone Cancer Center NCCN Guidelines Panel Disclosures 3.2017, 02/16/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®. Printed by Anton Kabakov on 3/5/2018 7:06:43 AM. For personal use only. Not approved for distribution. Copyright © 2018 National Comprehensive Cancer Network, Inc., All Rights Reserved. NCCN Guidelines Version 3.2017 Sub-Committees NCCN Guidelines Index Table of Contents Survivorship Discussion Sexual Function Sleep Disorders Healthy Lifestyles Mindy Goldman, MD/Co-Lead Ω Phyllis Zee, MD/Lead ψ Crystal Denlinger, MD/Lead † UCSF Helen Diller Family Robert H. Lurie Comprehensive Cancer Fox Chase Cancer Center Comprehensive Cancer Center Center of Northwestern University Wendy Demark-Wahnefried, PhD, RD ≅ Gregory Broderick, MD/Co-Lead Elizabeth Kvale, MD £ University of Alabama at Birmingham Mayo Clinic Cancer Center University of Alabama at Birmingham Comprehensive Cancer Center Robin M. Lally, PhD, RN, MS Comprehensive Cancer Center Fred & Pamela Buffett Cancer Center Melissa Hudson, MD € ‡ † Tracey O’Connor, MD † St. Jude Children's Research Hospital/ Michelle Melisko, MD † £ Roswell Park Cancer Institute The University of Tennessee Health UCSF Helen Diller Family Science Center Comprehensive Cancer Center Jeffrey Peppercorn, MD, MPH † Massachusetts General Hospital Nazanin Khakpour, MD ¶ Kathryn J. Ruddy, MD, MPH ‡ † Moffitt Cancer Center Mayo Clinic Cancer Center Tara Sanft, MD † Þ Amye Tevaarwerk, MD ‡ Yale Cancer Center/ Michelle
Recommended publications
  • (ACIP) General Best Guidance for Immunization
    8. Altered Immunocompetence Updates This section incorporates general content from the Infectious Diseases Society of America policy statement, 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host (1), to which CDC provided input in November 2011. The evidence supporting this guidance is based on expert opinion and arrived at by consensus. General Principles Altered immunocompetence, a term often used synonymously with immunosuppression, immunodeficiency, and immunocompromise, can be classified as primary or secondary. Primary immunodeficiencies generally are inherited and include conditions defined by an inherent absence or quantitative deficiency of cellular, humoral, or both components that provide immunity. Examples include congenital immunodeficiency diseases such as X- linked agammaglobulinemia, SCID, and chronic granulomatous disease. Secondary immunodeficiency is acquired and is defined by loss or qualitative deficiency in cellular or humoral immune components that occurs as a result of a disease process or its therapy. Examples of secondary immunodeficiency include HIV infection, hematopoietic malignancies, treatment with radiation, and treatment with immunosuppressive drugs. The degree to which immunosuppressive drugs cause clinically significant immunodeficiency generally is dose related and varies by drug. Primary and secondary immunodeficiencies might include a combination of deficits in both cellular and humoral immunity. Certain conditions like asplenia and chronic renal disease also can cause altered immunocompetence. Determination of altered immunocompetence is important to the vaccine provider because incidence or severity of some vaccine-preventable diseases is higher in persons with altered immunocompetence; therefore, certain vaccines (e.g., inactivated influenza vaccine, pneumococcal vaccines) are recommended specifically for persons with these diseases (2,3). Administration of live vaccines might need to be deferred until immune function has improved.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Asplenia Vaccination Guide
    Stanford Health Care Vaccination Subcommitee Revision date 11/308/2018 Functional or Anatomical Asplenia Vaccine Guide I. PURPOSE To outline appropriate vaccines targeting encapsulated bacteria for functionally or anatomically asplenic patients. Routine vaccines that may also be indicated but not addressed here include influenza, Tdap, herpes zoster, HPV, MMR, and varicella.1,2,3 II. Background Functionally or anatomically asplenic patients should be vaccinated to decrease the risk of sepsis due to organisms such as Streptococcus pneumoniae, Haemophilus influenzae type B, and Neisseria meningitidis. Guidelines are based on CDC recommendations. For additional information, see https://www.cdc.gov/vaccines/schedules/hcp/imz/adult-conditions.html. III. Procedures/Guidelines1,2,3,6,7,8 The regimen consists of 4 vaccines initially, followed by repeat doses as specified: 1. Haemophilus b conjugate (Hib) vaccine (ACTHIB®) IM once if they have not previously received Hib vaccine 2. Pneumococcal conjugate 13-valent (PCV13) vaccine (PREVNAR 13®) IM once • 2nd dose: Pneumococcal polysaccharide 23-valent (PPSV23) vaccine (PNEUMOVAX 23®) SQ/IM once given ≥ 8 weeks later, then 3rd dose as PPSV23 > 5 years later.4 Note: The above is valid for those who have not received any pneumococcal vaccines previously, or those with unknown vaccination history. If already received prior doses of PPSV23: give PCV13 at least 1 year after last PPSV23 dose. 3. Meningococcal conjugate vaccine (MenACWY-CRM, MENVEO®) IM (repeat in ≥ 8 weeks, then every 5 years thereafter) 4. Meningococcal serogroup B vaccine (MenB, BEXSERO®) IM (repeat in ≥ 4 weeks) Timing of vaccination relative to splenectomy: 1. Should be given at least 14 days before splenectomy, if possible.
    [Show full text]
  • Standards of Medical Fitness
    Army Regulation 40–501 Medical Services Standards of Medical Fitness Rapid Action Revision (RAR) Issue Date: 23 August 2010 Headquarters Department of the Army Washington, DC 14 December 2007 UNCLASSIFIED SUMMARY of CHANGE AR 40–501 Standards of Medical Fitness This rapid action revision, dated 23 August 2010-- o Clarifies waiver authorities for officer accessions and commissions for the U.S. Military Academy, Reserve Officers’ Training Corps, and Officer Candidate School (paras 1-6c and 1-6e). o Updates the medical retention standards for psychiatric disorders and hearing (paras 3-10 and 3-31). o Adds a requirement for referral to a Medical Evaluation Board for rhabdomyolysis (para 3-40). o Provides new definitions for heat illness and reasons for a Medical Evaluation Board (para 3-45). o Clarifies who has ultimate responsibility to determine whether to deploy a Soldier (para 5-14d, 5-14e, and 5-14f). o Updates deployment-limiting psychiatric medical conditions (para 5-14f(8)). o Updates functional activities to reflect content changes to DA Form 3349, Physical Profile (chap 7). o Requires review of all permanent 3 and 4 profiles by a Medical Evaluation Board physician or other physician approval authority (para 7-4b). o Establishes and defines the term Medical Retention Determination Point (para 7-4b(2)). o Allows physician assistants, nurse practitioners, and nurse midwives to write permanent profiles as the profiling officer (para 7-6a(4)). o Changes administrative code designations for physical profiles (table 7-2). o Adds psychiatric evaluations for certain administrative separations (paras 8-24a(1) and 8-24a(2)).
    [Show full text]
  • Heterotaxy: Associated Conditions and Hospital- Based Prevalence in Newborns Angela E
    May/June 2000. Vol. 2 . No. 3 Heterotaxy: Associated conditions and hospital- based prevalence in newborns Angela E. Lin, MD',~,*, Baruch S. Ticho, MD, phD3j4,Kara Houde, MA1,Marie-Noel Westgate, ME^', and Lewis B. Holmes, MD',~,~ Purpose: To provide insight into the possible etiology and prevalence of heterotaxy, we studied conditions associated with heterotaxy in a consecutive hospital population of newborns. Methods: From 1972 to March, 1999 (except February 16, 1972 to December 31, 1978), 58 cases of heterotaxy were ascertained from a cohort of 201,084 births in the ongoing Active Malformation Surveillance Program at the Brigham and Women's Hospital. This registry includes livebirths, stillbirths, and elective abortions. Prevalence among nontransfers (i.e., patients whose mothers had planned delivery at this hospital) was calculated as approximately 1per 10,000 total births (20 of 201,084). Results: We analyzed a total of 58 patients consisting of 20 (34%) nontransfers and 38 (66%) transfers. Patients were categorized by spleen status as having asplenia (7 nontransfers, 25 total), polysplenia (8, 20), right spleen (4, ll),normal left (0, I), and unknown (1, 0). Among the 20 nontransfer and 59 total heterotaxy patients, the following associated medical conditions were present: chromosome abnormality (1nontransfer, 2 total), suspected Mendelian or chromosome microdeletion disorder (1nontransfer, 6 total), and maternal insulin- dependent diabetes mellitus (1 nontransfer, 2 total). There were 6 twins (1 member each from 6 twin pairs including 1dizygous, 4 monozygous, 1conjoined; 2 were nontransfers). An associated condition occurred in 5 (25%) nontransfer and 16 (28%) total patients, or among 10 of 53 singleton births (19%).
    [Show full text]
  • An Unusual Etiology of Cytopenia, Diffuse Lymphadenopathy, and Massive Splenomegaly M
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2015 "The Great Mimicker": An Unusual Etiology of Cytopenia, Diffuse Lymphadenopathy, and Massive Splenomegaly M. Zaarour Northwell Health C. Weerasinghe Northwell Health E. Moussaly Northwell Health S. Hussein Northwell Health J. P. Atallah Hofstra Northwell School of Medicine Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Pathology Commons Recommended Citation Zaarour M, Weerasinghe C, Moussaly E, Hussein S, Atallah J. "The Great Mimicker": An Unusual Etiology of Cytopenia, Diffuse Lymphadenopathy, and Massive Splenomegaly. 2015 Jan 01; 2015():Article 683 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/683. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact [email protected]. Hindawi Publishing Corporation Case Reports in Medicine Volume 2015, Article ID 637965, 6 pages http://dx.doi.org/10.1155/2015/637965 Case Report (The Great Mimicker): An Unusual Etiology of Cytopenia, Diffuse Lymphadenopathy, and Massive Splenomegaly Mazen Zaarour,1 Chanudi Weerasinghe,1 Elias Moussaly,1 Shafinaz Hussein,2 and Jean-Paul Atallah3 1 Department of Medicine, Staten Island University Hospital, North Shore-LIJ Health System, Staten Island, New York, NY 10305, USA 2Department of Pathology, Staten Island University Hospital, North Shore-LIJ Health System, Staten Island, New York, NY 10305, USA 3Division of Hematology and Oncology, Department of Medicine, Staten Island University Hospital, North Shore-LIJ Health System, StatenIsland,NewYork,NY10305,USA Correspondence should be addressed to Mazen Zaarour; [email protected] Received 11 August 2015; Accepted 4 October 2015 Academic Editor: Masahiro Kohzuki Copyright © 2015 Mazen Zaarour et al.
    [Show full text]
  • Post-Splenectomy Sepsis: a Review of the Literature
    Open Access Review Article DOI: 10.7759/cureus.6898 Post-splenectomy Sepsis: A Review of the Literature Faryal Tahir 1 , Jawad Ahmed 1 , Farheen Malik 2 1. Internal Medicine, Dow University of Health Sciences, Karachi, PAK 2. Pediatrics, Dow University of Health Sciences, Karachi, PAK Corresponding author: Jawad Ahmed, [email protected] Abstract The spleen is an intraperitoneal organ that performs vital hematological and immunological functions. It maintains both innate and adaptive immunity and protects the body from microbial infections. The removal of the spleen as a treatment method was initiated from the early 1500s for traumatic injuries, even before the physiology of spleen was properly understood. Splenectomy has therapeutic effects in many conditions such as sickle cell anemia, thalassemia, idiopathic thrombocytopenic purpura (ITP), Hodgkin’s disease, and lymphoma. However, it increases the risk of infections and, in some cases, can lead to a case of severe sepsis known as overwhelming post-splenectomy infection (OPSI), which has a very high mortality rate. Encapsulated bacteria form a major proportion of the invading organisms, of which the most common is Streptococcus pneumoniae. OPSI is a medical emergency that requires prompt diagnosis (with blood cultures and sensitivity, blood glucose levels, renal function tests, and electrolyte levels) and management with fluid resuscitation along with immediate administration of empirical antimicrobials. OPSI can be prevented by educating patients, vaccination, and antibiotic prophylaxis.
    [Show full text]
  • The Green Book of Immunisation
    Chapter 7: Immunisation of individuals with underlying medical conditions January 2020 7 Immunisation of individuals with conditions with underlying medical underlying medical conditions Immunisation of individuals Introduction Some medical conditions increase the risk of complications from infectious diseases, and children and adults with such conditions should be immunised as a matter of priority. These groups may also require additional vaccinations or additional doses of vaccines to provide adequate protection. Immunosuppression Although many live vaccines are contra-indicated in immunosuppressed individuals (see Chapter 6: Contraindications and special considerations), individuals with immunosuppression and HIV infection (regardless of CD4 count) should be given all inactivated vaccines in accordance with national recommendations. However, these individuals may not mount as good an antibody response as immunocompetent individuals. As immunosuppressed individuals, including those with complement disorders, are at particular risk from certain infections additional vaccines should be offered (see below). Household and close contacts of immunosuppressed individuals may also require additional vaccines (see below). Wherever possible, immunisation or boosting of immunosuppressed or HIV-positive individuals should be either carried out before immunosuppression occurs or deferred until an improvement in immunity has been seen. The optimal timing for any vaccination should be based upon a judgement about the relative need for rapid protection and the likely response. For individuals due to commence immunosuppressive treatments, inactivated vaccines should ideally be administered at least two weeks before commencement. In some cases this will not be possible and therefore vaccination may be carried out at any time and re-immunisation considered after treatment is finished and recovery has occurred. Data on long-term antibody levels following vaccination of severely immunosuppressed individuals is limited.
    [Show full text]
  • Standard on the Immunization of Individuals with Chronic Conditions
    Standard on the Immunization of Individuals with Chronic Health Conditions and/or Immunosuppression Section : 8 Immunization of Special Populations Standard #: 08.305 Created by: Province-wide Immunization Program, Standards and Quality Approved by: Province-wide Immunization Program, Standards and Quality Approval Date: June 1, 2015 Revised: August 1, 2020 Preamble AHS Province-wide Immunization Program Standards and Quality, Population, Public and Indigenous Health Division provides Public Health and other partners who administer provincially funded vaccines with ongoing and timely information relating to province-wide immunization program standards and quality. These standards are based on currently available evidence based information, Alberta Health (AH) policy, and provincial and national guidelines. Immunizers must be knowledgeable about the specific vaccines they administer. Background Chronic diseases and immunosuppression may increase an individual’s risk of acquiring illness and/or result in more severe disease when vaccine preventable diseases occur. Therefore, it is important that individuals with these conditions receive all routinely recommended immunizations and immunizations recommended because of their specific health conditions unless contraindicated. Purpose The purpose of this standard is to outline which vaccines are recommended for individuals with specific chronic health conditions and/or immunosuppression. Only health conditions where special vaccines are recommended in addition to routine immunization recommendations
    [Show full text]
  • Asplenia Vaccine Record | Memorial Sloan Kettering Cancer Center
    PATIENT & CAREGIVER EDUCATION Asplenia Vaccine Record This information will help you keep track of the vaccines you’ll need after radiation treatment to your spleen, or after your spleen is removed. Your spleen is an important part of your body’s immune system. You’re getting this resource because you: Have had, or will have, all or part of your spleen removed. This is called a splenectomy. Received radiation treatment to your spleen so it’s weaker and can’t fight infection as well. This is called functional asplenia. Without a spleen or with a weakened spleen, you have a higher chance of getting a bacterial infection. You can help prevent these infections by getting recommended vaccines. Vaccines and Surgery If you know you’re having surgery, get your vaccines at least 14 days before your surgery. If you had unplanned surgery, you must wait at least 14 days after your surgery to begin getting your vaccines. Surgery date: ___________________ Asplenia Vaccine Record 1/4 Types of Vaccines You will need several vaccines. Your healthcare provider will let you know which vaccines you should get. All of the vaccines are given as shots in your muscle. Haemophilus B (Hib) Conjugate Prevents Hib disease that can cause meningitis, pneumonia, and other serious illnesses. These illnesses can cause disability or death. Pneumococcal Helps prevent infection by pneumococcal bacteria. Pneumococcal bacteria can cause pneumonia, meningitis, and other serious illnesses that can cause death. For broader protection, there are 2 vaccines available, Prevnar-13® and Pneumovax-23® . You will get Prevnar-13 first. You can get Pneumovax-23 at least 12 weeks later.
    [Show full text]
  • Infections That Suggest an Immunodeficiency
    INFECTIONS THAT SUGGEST AN IMMUNODEFICIENCY Ricardo U. Sorensen, MD CONTENT OUTLINE 1. Introduction 2. Overview of host defenses 3. Host defenses and infection groups 4. Classification of immunodeficiencies 5. Warning signs of immunodeficiency 6. Infections that suggest an immunodeficiency 7. Infections unlikely to be associated with an immunodeficiency 8. Conditions that may coexist with an immunodeficiency 9. How to target an immune evaluation 10. Infections that suggest: 10.1 Antibody deficiency only 10.2. Combined and cellular immunodeficiencies 10.3. Phagocytic deficiencies only 10.4. Phagocytic and combined immunodeficiencies 10.5. Complement and antibody deficiencies 10.6. Congenital or secondary asplenia 1. INTRODUCTION Normal children have infections that can be considered an integral part of growing up. However, when these infections are recurrent or their severity is disproportionate to the virulence of the offending infectious agent, an immunodeficiency or other predisposing factor must be suspected and sought. In the process of deciding if recurrent or single infections are suggestive of predisposing factors, it is helpful to follow a stepwise method of evaluation: 1. Is the infection “normal” or “pathologic”? 2. If the infection is “pathologic”, it is important to ask the question of why the patient may have these infections: can it be explained by the presence of known risk factors or is an immunologic evaluation indicated? Once it is determined that the infection(s) are “pathologic”, the next step is to decide what component of the immune system needs to be evaluated. This can be done in general by determining if the infections are caused by extracellular or intracellular pathogens and by knowing about special associations between infection phenotypes and immunodeficiency groups or specific immunodeficiencies.
    [Show full text]
  • EUROCAT Syndrome Guide
    JRC - Central Registry european surveillance of congenital anomalies EUROCAT Syndrome Guide Definition and Coding of Syndromes Version July 2017 Revised in 2016 by Ingeborg Barisic, approved by the Coding & Classification Committee in 2017: Ester Garne, Diana Wellesley, David Tucker, Jorieke Bergman and Ingeborg Barisic Revised 2008 by Ingeborg Barisic, Helen Dolk and Ester Garne and discussed and approved by the Coding & Classification Committee 2008: Elisa Calzolari, Diana Wellesley, David Tucker, Ingeborg Barisic, Ester Garne The list of syndromes contained in the previous EUROCAT “Guide to the Coding of Eponyms and Syndromes” (Josephine Weatherall, 1979) was revised by Ingeborg Barisic, Helen Dolk, Ester Garne, Claude Stoll and Diana Wellesley at a meeting in London in November 2003. Approved by the members EUROCAT Coding & Classification Committee 2004: Ingeborg Barisic, Elisa Calzolari, Ester Garne, Annukka Ritvanen, Claude Stoll, Diana Wellesley 1 TABLE OF CONTENTS Introduction and Definitions 6 Coding Notes and Explanation of Guide 10 List of conditions to be coded in the syndrome field 13 List of conditions which should not be coded as syndromes 14 Syndromes – monogenic or unknown etiology Aarskog syndrome 18 Acrocephalopolysyndactyly (all types) 19 Alagille syndrome 20 Alport syndrome 21 Angelman syndrome 22 Aniridia-Wilms tumor syndrome, WAGR 23 Apert syndrome 24 Bardet-Biedl syndrome 25 Beckwith-Wiedemann syndrome (EMG syndrome) 26 Blepharophimosis-ptosis syndrome 28 Branchiootorenal syndrome (Melnick-Fraser syndrome) 29 CHARGE
    [Show full text]