The Promise of Spintronics for Unconventional Computing
The promise of spintronics for unconventional computing Giovanni Finocchio,1,* Massimiliano Di Ventra,2 Kerem Y. Camsari,3 Karin Everschor‐Sitte,4 Pedram Khalili Amiri,5 and Zhongming Zeng6 1Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, 98166, Italy ‐ Tel. +39.090.3975555 2Department of Physics, University of California, San Diego, La Jolla, California 92093, USA, ‐ Tel. +1.858.8226447 3School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA ‐ Tel. +1.765.4946442 4Institut für Physik, Johannes Gutenberg‐Universität Mainz, DE‐55099 Mainz, Germany ‐ Tel. +49.61313923645 5Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA ‐ Tel. +1.847.4671035 6 Key Laboratory of Multifunctional Nanomaterials and Smart Systems,, Suzhou Institute of Nano‐tech and Nano‐bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123, P. R. China ‐ Tel. +86.0512.62872759 1 Abstract Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/or stochasticity that spintronic devices can exhibit, and (iii) their compatibility with CMOS logic manufacturing processes.
[Show full text]