Weekly April 12, 2021

Total Page:16

File Type:pdf, Size:1020Kb

Weekly April 12, 2021 Join the CenterWatch Community! Weekly April 12, 2021 COVID-19 Update…2 Industry Briefs …4 Up and Coming…6 Sites Push Back on the Burden of Handling Drug & Device Pipeline News…10 Sponsors’ Unnecessary Safety Reports Forty-four drugs and devices have entered a new trial phase this week. By Charlie Passut “Sites are really starting to take a stand,” Research Center Spotlight…13 ponsors are overwhelming sites said Steven Beales, senior vice president with a growing volume of safety for WCG’s scientific and regulatory division. reports, and sites are fighting back. “Some of the biggest [academic] sites S VIRTUAL WORKSHOP The magnitude of the problem of un- are coming back to sponsors and saying necessary and overly burdensome safety enough is enough. We’re going to see Effective Root Cause Analysis and CAPA Investigations for reporting is getting worse; in the past more and more of this pushback from the Life Sciences three years, some sponsors of oncology nonacademic sites if sponsors don’t do Tuesday, June 22 - Thursday, June 24, 2021 drugs have unleashed a five-fold increase something,” Beales said. Presented by WCG FDAnews and in safety reports. Part of the problem is that some spon- ValSource Learning Solution Safety reporting procedures have always sors and CROs do not differentiate between REGISTER TODAY been a time-consuming challenge for sites, adverse events caused by the investigational but sponsor and CRO safety reports that product and those related to factors outside FREE WEBINAR duplicate information or are not needed the trial, classifying everything as requiring APRIL increase the workload for staff who need to documentation in a suspected unexpected process the reports. The rising complexity of serious adverse reaction (SUSAR) report. 15 trials and the growing number of oncology “Sponsors think they’re following the letter Five Telltale Signs You’re Ready trials is amplifying the problem. see Unnecessary Safety Reports on page 7 » for an Electronic TMF System Deputy Commissioner Says FDA Working at Sponsored by REGISTER Top Speed to Develop RWD Skills Agatha, Inc. By Charlie Passut familiarity with working with RWD to create ore than 60 percent of current an inclusive approach that weighs the total- drug submissions to the FDA ity of the evidence. M include real-world data (RWD) in “You may think that we’ve known the some form, and agency officials are saying scientific methods for observational research the FDA needs to expedite honing its skill set for a very long time, but in fact these data- in regulating the use of it in trials. sets are different,” Abernethy told attendees Amy Abernethy, principal deputy com- of the Pharma Clinical 2021 Conference missioner for food and drugs at the FDA, last week. “We need to develop definitions said the agency needs to strengthen those for variables within the datasets that are skills as soon as possible. “RWD is becoming common and well-understood across differ- Without a working knowledge progressively more common and important,” ent datasets. We need to develop ways of of EU privacy laws and regulations, she said. working with datasets when the informa- you run the risk of not being compliant. Abernethy said the FDA is learning tion is rapidly accumulating and also when If your clinical trials how to analyze real-world datasets better the day-to-day delivery of care is adjusting involve the personal data and how to incorporate them as part of an across time. And we really need to be able of EU-based individuals, you need to understand overall evidence package. But she said the to rapidly convey the methods as they the rules that apply to Data Privacy in the EU see Develop RWD Skills on page 8 data collection. agency still needs to develop a comfort and » A Guide for Clinical Trial Sponsors and Sites ORDER TODAY Vol. 25, Issue 15. Copyright © 2021 by WCG CenterWatch CenterWatch Weekly April 12, 2021 2 of 13 COVID-19 Update COVID-19 Drug Research found that the nasally administered anti-CD3 COVID-19 Vaccines: Roundup antibody treatment was well-tolerated and Johnson & Johnson (J&J) is now dosing COVID-19 Therapies: associated with reduced pulmonary and sys- adolescents with its COVID-19 vaccine can- Eli Lilly’s and Incyte’s Janus kinase (JAK) temic inflammation. Treatment with Foralum- didate Ad26.COV2.S in an ongoing, placebo- inhibitor Olumiant (baricitinib) proved unable ab in this prior study reduced several markers controlled phase 2a trial. The randomized to significantly reduce progression to nonin- of inflammation, including C-reactive protein trial was launched in September and initially vasive ventilation for COVID-19 patients in a and interleukin-6. Another recent study from included healthy adults between 18 and phase 3 trial, though the drug still managed Harvard Medical School and a Brazilian CRO 55 years of age as well as individuals 65 to significantly reduce the risk of death. The also found that Foralumab reduced pulmo- years and older. The amended protocol now companies announced last week that the nary and systemic inflammation. includes adolescents and teenagers between phase 3 study didn’t meet its primary end- Sound Pharmaceuticals is planning to 12 and 17 years of age. Currently, the study is point, with only 2.7 percent of patients given launch two phase 2 trials to study SPI-1005, enrolling participants from the UK and Spain, the JAK inhibitor proving less likely than those an oral capsule comprising small-molecule but J&J expects to soon start enrollment who received standard of care to progress to ebselen, in patients with moderate-to-se- in the U.S., Canada and the Netherlands. In ventilation or death, a finding that was not vere COVID-19. While the therapy was devel- February, the FDA granted an Emergency Use statistically significant, the companies said. oped for neurotologic, neuropsychiatric and Authorization (EUA) to the company’s single- Grifols has announced that its investi- respiratory indications, a Cooperative Grant dose version of its vaccine, but this authoriza- gational immunoglobulin therapy CoVIg-19 award of $3.1 million from the National tion restricts the use of the vaccine to adults. showed no benefit in 593 hospitalized adults Institutes of Health’s National Center for The EUA was based on findings from the with COVID-19 who participated in the phase Advancing Translational Sciences has pro- phase 3 ENSEMBLE trial, which showed the 3 INSIGHT-013 trial. The therapy, which con- vided an incentive for Sound to investigate vaccine was 66 percent effective at prevent- sists of antibodies from patients who have SPI-1005 in treating the novel coronavirus. ing moderate-to-severe COVID-19 approxi- recovered from COVID-19, was developed in A total of 120 patients with moderate-to- mately four weeks following vaccination. partnership with Takeda Pharmaceutical, severe COVID-19 will be enrolled in the The University of Oxford is pausing a trial CSL Behring, Emergent BioSolutions and two randomized, placebo-controlled trials. evaluating AstraZeneca’s COVID-19 vaccine other companies involved in the CoVIg-19 Patients will receive either SPI-1005 or pla- in children and teenagers after concerns Plasma Alliance. The late-stage trial was con- cebo for up to seven or 14 days. The primary were raised that the vaccine may be associ- ducted across 63 sites in the U.S. as well as 10 outcome is the number of participants with ated with rare cases of blood clotting. Back other countries. The investigators assessed treatment-related adverse events. Additional in February, researchers of the study started whether the plasma treatment reduced the secondary study outcomes include clinical to recruit 300 people between the ages of risk of COVID-19 progression when added to improvement and degree of supplemental six and 17 years who were to receive the standard of care, including Gilead Sciences’ oxygen required during treatment. AstraZeneca vaccine or a control meningitis remdesivir. There was no difference between Findings from a phase 1 study show that vaccine. The UK’s Medicines and Healthcare patients who received CoVIg-19 vs. standard UNION therapeutics’ COVID-19 inhaled products Regulatory Agency (MHRA) is now of care only in regard to clinical status at day and intranasal niclosamide candidates are recommending that people under the age seven. Following the announcement of the safe when administered to healthy people. of 30 try to get a different vaccine if pos- study results, the CoVIg-19 Plasma Alliance The study included 44 healthy participants sible. Previously, the MHRA had said that the announced it plans to disband. who were randomized to either one of the benefits of the COVID-19 vaccine outweigh Tiziana Life Sciences announced it will UNI911 candidates (UNI91103 or UNI91104) the potential risks. The World Health Orga- soon launch a phase 2 trial for Foralumab, the or placebo. The trial met its endpoints and nization has also echoed these sentiments. company’s nasal anti-CD3 human monoclo- demonstrated that the niclosamide solution The European Medicines Agency has not nal antibody, in hospitalized patients with was well-tolerated when administered both identified a causal association between moderate-to-severe COVID-19. The random- intranasally and through inhalation. There was AstraZeneca’s COVID-19 vaccine candidate ized, placebo-controlled trial will be conduct- no indication of systemic accumulation of the and blood clots. ed in Brazil. Patients enrolled in the study will products in the blood. These findings pave the A phase 2 study led by the NIH’s National receive standard-of-care background therapy way for future studies that will examine the Institute of Allergy and Infectious Diseases is with or without Foralumab. A previous study prophylactic and treatment efficacy of these looking to assess the risk of allergic reactions in patients with mild-to-moderate COVID-19 drug candidates in patients with COVID-19.
Recommended publications
  • Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines
    Review Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines Puna Maya Maharjan 1 and Sunghwa Choe 2,3,* 1 G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; punamaya.maharjan@gflas.com 2 G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea 3 School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea * Correspondence: [email protected] Abstract: The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco- produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical Citation: Maharjan, P.M.; Choe, S. trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more Plant-Based COVID-19 Vaccines: neutralizing antibody responses compared to those present in a convalescent patient’s plasma.
    [Show full text]
  • BANCOVID, the First D614G Variant Mrna-Based Vaccine Candidate Against SARS
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.319061; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 BANCOVID, the first D614G variant mRNA-based vaccine candidate against SARS- 2 CoV-2 elicits neutralizing antibody and balanced cellular immune response 3 Juwel Chandra Baray, Md. Maksudur Rahman Khan, Asif Mahmud, Md. Jikrul Islam, Sanat 4 Myti, Md. Rostum Ali, Md. Enamul Haq Sarker, Samir Kumar, Md. Mobarak Hossain 5 Chowdhury, Rony Roy, Faqrul Islam, Uttam Barman, Habiba Khan, Sourav Chakraborty, Md. 6 Manik Hossain, Md. Mashfiqur Rahman Chowdhury, Polash Ghosh, Mohammad Mohiuddin, 7 Naznin Sultana*, Kakon Nag* 8 Globe Biotech Ltd., 3/Ka, Tejgaon I/A, Dhaka – 1208, Bangladesh, 9 *, to whom correspondence should be made. 10 E-mail: [email protected], [email protected] 11 12 13 Key words: COVID, Coronavirus, Lipid nanoparticle, LNP, Vaccination, Immunization, 14 15 16 Abstract 17 Effective vaccine against SARS-CoV-2 is the utmost importance in the current world. More 18 than 1 million deaths are accounted for relevant pandemic disease COVID-19. Recent data 19 showed that D614G genotype of the virus is highly infectious and responsible for almost all 20 infection for 2nd wave. Despite of multiple vaccine development initiatives, there are currently 21 no report that has addressed this critical variant D614G as vaccine candidate. Here we report 22 the development of an mRNA-LNP vaccine considering the D614G variant and 23 characterization of the vaccine in preclinical trial.
    [Show full text]
  • 1. Sars-Cov Nucleocapsid Protein Epitopes and Uses Thereof
    www.engineeringvillage.com Citation results: 500 Downloaded: 4/24/2020 1. SARS-COV NUCLEOCAPSID PROTEIN EPITOPES AND USES THEREOF KELVIN, David; PERSAD, Desmond; CAMERON, Cheryl; BRAY, Kurtis, R.; LOFARO, Lori, R.; JOHNSON, Camille; SEKALY, Rafick-Pierre; YOUNES, Souheil-Antoine; CHONG, Pele Assignee: UNIVERSITY HEALTH NETWORK; BECKMAN COULTER, INC.; UNIVERSITE DE MONTREAL; NATIONAL HEALTH RESEARCH INSTITUTES Publication Number: WO2005103259 Publication date: 11/03/2005 Kind: Patent Application Publication Database: WO Patents Compilation and indexing terms, 2020 LexisNexis Univentio B.V. Data Provider: Engineering Village 2. SARS-CoV-specific B-cell epitope and applications thereof Wu, Han-Chung; Liu, I-Ju; Chiu, Chien-Yu Assignee: National Taiwan University Publication Number: US20060062804 Publication date: 03/23/2006 Kind: Utility Patent Application Database: US Patents Compilation and indexing terms, 2020 LexisNexis Univentio B.V. Data Provider: Engineering Village 3. A RECOMBINANT SARS-COV VACCINE COMPRISING ATTENUATED VACCINIA VIRUS CARRIERS QIN, Chuan; WEI, Qiang; GAO, Hong; TU, Xinming; CHEN, Zhiwei; ZHANG, Linqi; HO, David, D. Assignee: INSTITUTE OF LABORATORY ANIMAL SCIENCE OF CHINESE ACADEMY OF MEDICAL SCIENCES; THE AARON DIAMOND AIDS RESEARCH CENTER; QIN, Chuan; WEI, Qiang; GAO, Hong; TU, Xinming; CHEN, Zhiwei; ZHANG, Linqi; HO, David, D. Publication Number: WO2006079290 Publication date: 08/03/2006 Kind: Patent Application Publication Database: WO Patents Compilation and indexing terms, 2020 LexisNexis Univentio B.V. Data
    [Show full text]
  • Mrna-Based Vaccines to Elicit CD8+ T Cell Immunity
    mRNA-based Vaccines to Elicit CD8+ T Cell Immunity Ans De Beuckelaer Thesis submitted in partial fulfilment of the requirements for the degree of Doctor in Sciences: Biochemistry and Biotechnology 2016 Promoter Prof. Dr. Johan Grooten Co-promoter Dr. Stefaan De Koker Laboratory of Molecular Immunology Department of Biomedical Molecular Biology Faculty of Sciences, Ghent University The research described in this doctoral thesis was performed at the Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University. Ans De Beuckelaer was supported by a personal fellowship of the IWT (Innovation by Science and Technology). No part of this thesis may be reproduced or published without prior permission of the author. © Ans De Beuckelaer 2016 mRNA- based Vaccines to Elicit CD8+ T cell Immunity Ans De Beuckelaer1 Academic year: 2015- 2016 Promoter: Prof. Dr. Johan Grooten1 Co-Promoter: Dr. Stefaan De Koker2 Examination committee Chair Prof. Dr. Rudi Beyaert1,3 Secretary Prof. Dr. Xavier Saelens1,4 Voting members Prof. Dr. Vanham5,6 Prof. Dr. Karine Breckpot7 Prof. Dr. Katrien Remaut8 1 Department of Biomedical Molecular Research, Ghent University, Ghent, Belgium 2 eTheRNA Immunotherapeutics NV, Niel, Belgium 3 Inflammation Research Center, VIB, UGhent, Ghent, Belgium 4 Medical Biotechnology, VIB, UGhent, Ghent, Belgium 5 Department of Biomedical Sciences, University of Antwerp, Anwterp, Belgium 6 Department of Biomedical Sciendes, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium 7 Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Univ. Brussel, Brussels, Belgium 8 Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharaceutical Sciences, UGhent, Ghent, Belgium TABLE OF CONTENT List of Abbreviations 8 Summary 13 Samenvatting 17 Introduction 21 CHAPTER 1.
    [Show full text]
  • Mcmx: a Proposal for a Federal Authority to Enhance Speed, Scale and Access to Medical Countermeasures
    MCMx: A Proposal for a Federal Authority to Enhance Speed, Scale and Access to Medical Countermeasures Findings from the Program in Global Public Policy and Social Change Medical Countermeasures Taskforce: Partnering for Public Good Authors Kendall Hoyt, Geisel School of Medicine, Dartmouth College Margaret Bourdeaux, Harvard Medical School Annmarie Sasdi, Harvard Medical School May 28, 2021 PROGRAM IN GLOBAL PUBLIC POLICY AND SOCIAL CHANGE TASK FORCE MEMBERS Katrine Thor Andersen Deputy Director, Global Health, William and Melinda Gates Foundation Thomas J. Bollyky Director, Global Health Program, Council on Foreign Relations Rick Bright, PhD Senior Vice President, Pandemic Prevention & Response, Health Initiative, The Rockefeller Foundation Philip Dormitzer, MD, PhD Vice President and Chief Scientific Officer Viral Vaccines, Pfizer Rebecca Fish President, Hart Ledge Consulting Bruce Gellin, MD, MPH President, Global Immunization, Sabin Vaccine Institute Arpa (Shah) Garay President, Global Pharmaceuticals, Commercial Analytics, Digital Marketing, Merck & Co. Jonathan P. Gertler, MD Managing Partner and CEO Of Back Bay Life Science Advisors and Managing Director, Bioventures Investors Medtech Funds Robert V. House, PhD, FATS Senior Vice President, Government Contracts, Ology Bioservices Kendall Hoyt, PhD Assistant Professor, Geisel School of Medicine, Dartmouth College Heather Ignatius Director, U.S. and Global Policy and Advocacy, PATH Ryan Morhard Ginkgo Bioworks Jake Reder, PhD CEO, Celdara Medical James Robinson Vice Chair, The Coalition for Epidemic Preparedness Innovations Julia Barnes-Weise, J.D., CFP Executive Director, The Global Healthcare Innovation Alliance Accelerator (GHIAA) Charlie Weller Head of Vaccines, Wellcome Trust 2 PROGRAM IN GLOBAL PUBLIC POLICY AND SOCIAL CHANGE CONTENTS I. Introduction II. MCMx Mission III. MCMx Strategic Plan: Creating a Research and Development Blueprint for MCMs in Future Outbreaks A.
    [Show full text]
  • Download Preprint
    1 Title: Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against 2 SARS-CoV-2 and variants of concern 3 4 Authors: Thibault Fiolet1*, Yousra Kherabi2,3, Conor-James MacDonald1, Jade Ghosn2,3, Nathan 5 Peiffer-Smadja2,3,4 6 7 1Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, "Exposome and Heredity" team, CESP 8 UMR1018, Villejuif, France 9 2Université de Paris, IAME, INSERM, Paris, France 10 11 3Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France 12 13 4National Institute for Health Research Health Protection Research Unit in Healthcare Associated 14 Infections and Antimicrobial Resistance, Imperial College, London, UK 15 16 *Corresponding author: 17 Email: [email protected] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 1 48 Abstract 49 Vaccines are critical cost-effective tools to control the COVID-19 pandemic. However, the emergence 50 of more transmissible SARS-CoV-2 variants may threaten the potential herd immunity sought from 51 mass vaccination campaigns. 52 The objective of this study was to provide an up-to-date comparative analysis of the characteristics, 53 adverse events, efficacy, effectiveness and impact of the variants of concern (Alpha, Beta, Gamma and 54 Delta) for fourteen currently authorized COVID-19 vaccines (BNT16b2, mRNA-1273, AZD1222, 55 Ad26.COV2.S, Sputnik V, NVX-CoV2373, Ad5-nCoV, CoronaVac, BBIBP-CorV, COVAXIN, 56 Wuhan Sinopharm vaccine, QazCovid-In, Abdala and ZF200) and two vaccines (CVnCoV and NVX- 57 CoV2373) currently in rolling review in several national drug agencies.
    [Show full text]
  • Dendritic Cell Targets for Self-Replicating RNA Vaccines Kenneth C
    Blood of & al L n y r m u p o h J Journal of Blood & Lymph McCullough, et al., J Blood Lymph 2015, 5:1 ISSN: 2165-7831 DOI: 10.4172/2165-7831.1000132 Mini Review Open access Dendritic Cell Targets for Self-Replicating RNA Vaccines Kenneth C. McCullough*, Panagiota Milona, Thomas Démoulins, Pavlos Englezou and Nicolas Ruggli Institute of Virology and Immunology, 3147 Mittelhaeusern, Switzerland *Corresponding author: Kenneth McCullough, Institute of Virology and Immunology, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland, Tel: +41-31-848-9262; E-mail: [email protected] Rec date: November 25, 2014, Acc date: January 20, 2015, Pub date: January 30, 2015 Copyright: © 2015 McCullough KC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Mini Review protect the RNA as well as enhancing its delivery to cells, for which interaction with DCs would prove a major contribution to Keywords: Dendritic cells; Replicon RNA; Self-replicating vaccines; development of immune defences. Figure 1 summarises main elements Nano particulate delivery contained in the present review below, including the advantages offered when applying biodegradable, nanoparticulate vehicles for Advances in Vaccine Development delivery of self-amplifying replicon RNA to DCs. Vaccination is the cornerstone for controlling many pathogen infections [1-8], and is also under scrutiny for cancer Delivery to Dendritic Cells Immunoprophylaxis/immunotherapy [9,10]. Induction of both Vaccine delivery to DCs is an important consideration due to their antibody and cell-mediated immune (CMI) defences is preferable for essential roles in immune defence development [8,17,19,21-24] – DCs ensuring robust immune defence against most pathogen infections, are referred to as the “professional antigen-presenting cells”.
    [Show full text]
  • Confronting the Threat of SARS‑Cov‑2: Realities, Challenges and Therapeutic Strategies (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 155, 2021 Confronting the threat of SARS‑CoV‑2: Realities, challenges and therapeutic strategies (Review) RUIXUE WANG1, XIAOSHAN LUO2, FANG LIU1 and SHUHONG LUO2 Departments of 1Basic Medicine and Biomedical Engineering and 2Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China Received August 1, 2020; Accepted November 2, 2020 DOI: 10.3892/etm.2020.9587 Abstract. The novel coronavirus (SARS‑CoV‑2) appeared Contents in2019 in Wuhan, China, and rapidly developed into a global pandemic. The disease has affected not only health care 1. Introduction systems and economies worldwide but has also changed the 2. Virology lifestyles and habits of the majority of the world's popula‑ 3. Epidemiology tion. Among the potential targets for SARS‑CoV‑2 therapy, 4. Mechanism of SARS‑CoV‑2 infection the viral spike glycoprotein has been studied most intensely, 5. Clinical manifestations and diagnosis due to its key role in mediating viral entry into target cells 6. Treatments and inducing a protective antibody response in infected indi‑ 7. Vaccines viduals. In the present manuscript the molecular mechanisms 8. Conclusions and outlook that are responsible for SARS‑CoV‑2 infection are described and a progress report on the status of SARS‑CoV‑2 research is provided. A brief review of the clinical symptoms of the 1. Introduction condition and current diagnostic methods and treatment plans for SARS‑CoV‑2 are also presented and the progress Following the emergence of severe acute respiratory syndrome of preclinical research into medical intervention against (SARS) coronavirus (SARS‑CoV) in 2003 and Middle East SARS‑CoV‑2 infection are discussed.
    [Show full text]
  • Impfstoffkandidaten Gegen SARS-Cov-2, Die Sich Aktuell In
    Impfstoffkandidaten gegen SARS-CoV-2, die sich aktuell in klinischer Prüfung befinden (Vereinfachte Übersicht, kein Anspruch auf Vollständigkeit, alle Angaben ohne Gewähr; Stand: 12.03.2021; die Reihenfolge der Darstellung wurde der Abbildung Strategien der SARS-CoV-2- Impfstoffentwicklung angeglichen sowie eine weitere Kategorie hinzugefügt; inhaltliche Änderungen im Vergleich zur Vorversion sind farblich gekennzeichnet) IMPFSTOFF-PLATTFORM/- ENTWICKLER KLINISCHE STUDIEN ART (HAUPTSITZ) (STUDIENORT)* VIRUSBASIERTE IMPFSTOFFE Inaktivierter Virusimpfstoff Wuhan Institute of Biological Phase 1/2 (China) (SARS-CoV-2) Products/Sinopharm (China) Phase 3 (UAE) Phase 3 (Marokko) Phase 3 (Peru) Phase 3 (Bahrain, Ägypten, Jordanien, UAE) Inaktivierter Virusimpfstoff Beijing Institute of Biological Phase 1/2 (China) BBIBP-CorV (SARS-CoV-2) Products/Sinopharm (China) Phase 3 (UAE) Phase 3 (Argentinien) Phase 3 (Bahrain, Ägypten, Jordanien, UAE) Inaktivierter Virusimpfstoff Sinovac Phase 1/2 (China) CoronaVac (China) Phase 1/2 (China) (SARS-CoV-2) Phase 1/2 (China) Phase 2 (Brasilien, immunsupprimierte Patienten) Phase 3 (Brasilien) Phase 3 (Indonesien) Phase 3 (Türkei) Phase 3 (China) Phase 3 (Chile) Phase 4 (Brasilien; Rekru- tierung noch nicht begonnen) Phase 4 (Brasilien) Phase 4 (Hong Kong, Patienten mit chron. Lebererkrankungen; Rekrutierung noch nicht begonnen) Inaktivierter Virusimpfstoff Institute of Medical Biology, Phase 1 (China) (SARS-CoV-2) Chinese Academy of Medical Phase 1/2 (China) Sciences (China) Nationale Lenkungsgruppe Impfen,
    [Show full text]
  • Medical Students and SARS-Cov-2 Vaccination: Attitude and Behaviors
    Article Medical Students and SARS-CoV-2 Vaccination: Attitude and Behaviors Bartosz Szmyd 1 , Adrian Bartoszek 1,2,*, Filip Franciszek Karuga 1,3 , Katarzyna Staniecka 1, Maciej Błaszczyk 1 and Maciej Radek 1 1 Department of Neurosurgery, Spine and Peripheral Nerves Surgery of Medical University of Lodz, 90-549 Łód´z,Poland; [email protected] (B.S.); fi[email protected] (F.F.K.); [email protected] (K.S.); [email protected] (M.B.); [email protected] (M.R.) 2 Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland 3 Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Łódz, Poland * Correspondence: [email protected] Abstract: Since physicians play a key role in vaccination, the initial training of medical students (MS) should aim to help shape their attitude in this regard. The beginning of vaccination programs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an excellent time to assess the attitudes held by both medical and non-medical students regarding vaccination. A 51- to 53- item questionnaire including the Depression, Anxiety and Stress Scale was administered to 1971 students (49.21% male; 34.86% MS); two career-related questions were also addressed to the MS. The majority of surveyed students indicated a desire to get vaccinated against SARS-CoV-2, with more medical than non-medical students planning to get vaccinated (91.99% vs. 59.42%). The most common concern about SARS-CoV-2 infection was the risk of passing on the disease to elderly relatives.
    [Show full text]
  • Ethical Guidelines for Conducting Research Studies Involving Human Subjects
    Bangladesh Medical Research Council Ethical Guidelines for Conducting Research Studies Involving Human Subjects CONTENTS SECTION – A 01. Ethical perspective of BMRC 1 1.1 Role of BMRC 1 1.2 Objectives of the ethical approval 3 1.3 Research requires ethical approval 3 1.4 Background 3 1.5 Definition of Ethics 4 1.6 General Ethical Principles 5 1.7 Important Issues in Ethical Consideration 5 1.8 Vulnerable population 02. International Guidelines on Ethics in Health Research 6 03. Issues in Ethical Clearance 7 3.1 Informed Consent 7 3.2. Confidentiality 10 3.3 Inducement 11 3.4 Compensation 04. Scientific Misconduct 12 05. Participants like Pregnant / Nursing women and Children 14 06. Post Trial Access 16 07. International collaboration / assistance in Biomedical / Health Research 16 08. Researcher’s relation with media and publication 18 09. Guideline on Research Ethics as per national health research strategies 19 SECTION – B 10. Interventional Studies 21 10.1. Drug Trial 22 10.1.1 Special Considerations 22 10.1.2. Phases of Clinical Trials 24 10.1.3. Special studies 26 10.1.4. Dissolution Studies 26 10.1.5. Special Concerns 27 10.1.5.1. Multicenter Trials 27 10.1.5.2. Contraceptives 28 10.1.5.3. Randomized Controlled Trial (RCT) 28 10.2. Vaccine Trials 30 10.2.1. Combination Vaccines 31 10.2.2. Special Concerns 32 10.3. Trials with Surgical Procedures/Medical Devices 33 10.3.1. Definition of Device 34 10.4. Diagnostic Agents- Use of Radio-Active Materials and X-Ray 35 10.5.
    [Show full text]
  • Ten Technologies to Fight Coronavirus
    Ten technologies to fight coronavirus IN-DEPTH ANALYSIS EPRS | European Parliamentary Research Service Author: Mihalis Kritikos Scientific Foresight Unit (STOA) EN PE 641.543 – April 2020 Ten technologies to fight coronavirus As the coronavirus (Covid-19) pandemic spreads, technological applications and initiatives are multiplying in an attempt to control the situation, treat patients in an effective way and facilitate the efforts of overworked healthcare workers, while developing new, effective vaccines. This analysis examines in detail how ten different technological domains are helping the fight against this pandemic disease by means of innovative applications. It also sheds light on the main legal and regulatory challenges, but also on the key socio-ethical dilemmas that the various uses of these technologies pose when applied in a public-health emergency context such as the current one. A scan of the technological horizon in the context of Covid-19 indicates that technology in itself cannot replace or make up for other public policy measures but that it does have an increasingly critical role to play in emergency responses. Covid-19, as the first major epidemic of our century, represents an excellent opportunity for policy-makers and regulators to reflect on the legal plausibility, ethical soundness and effectiveness of the deployment of emerging technologies under time pressure. Striking the right balance will be crucial for maintaining the public's trust in evidence-based public health interventions. I EPRS | European Parliamentary Research Se vice AUTHOR This in-depth analysis has been written by Mihalis Kritikos of the Scientific Foresight Unit (STOA) within the Directorate-General for Parliamentary Research Services (EPRS) of the Secretariat of the European Parliament.
    [Show full text]