Lecture 13 — February 25, 2021 Prof

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13 — February 25, 2021 Prof MATH 262/CME 372: Applied Fourier Analysis and Winter 2021 Elements of Modern Signal Processing Lecture 13 | February 25, 2021 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates 1 Outline Agenda: Magnetic resonance imaging (MRI) 1. Bird's eye view: physics at play, MRI machines 2. Nuclear magnetic resonance (NMR) 3. Bloch phenomenological equations 4. Relaxation times A nice introductory video to MRI can be found here http://www.youtube.com/watch?v=Ok9ILIYzmaY Last Time: We surveyed two techniques for efficiently computing non-uniform discrete Fourier transforms. We considered two distinct tasks: Type I : evaluating the Fourier transform at uniform frequencies from non-uniform data; and Type II : evaluating the transform at non-uniform frequen- cies from uniform data. Finally, we mentioned that Taylor approximations could be employed to simultaneously consider non-uniform grids in both domains, the so-called Type III problem. 2 Magnetic resonance imaging After studying computerized tomography (CT) and its connections to the Fourier transform, we now turn to discussing the principles behind magnetic resonance imaging (MRI). As we saw with X-ray tomography, the general idea of medical imaging is to measure the outcome of an interaction between the human body and a known energy source. In MRI, one measures the response of water molecules in the human body when subjected to low-energy electromagnetic pulses against a strong magnetic field. This makes MR an attractive imaging modality to practitioners, as there is no evidence that exposure to strong magnetic fields is harmful. Of course, in order to understand how electromagnetic pulses ultimately lead to an image, we need to construct a mathematical model of the relevant physics. Once we have this model, we will understand what is necessary to recover the quantity of interest from the observed outcome. 1 One interesting aspect about MRI is that it builds on several discoveries made throughout the last century. After the early development of quantum mechanics, there was interest in observing experimentally the predictions of the theory. Of particular interest was the prediction that atomic nucleii have an intrinsic magnetic moment due to their spin. Isidor Isaac Rabi discovered the phenomenon of nuclear magnetic resonance and developed an extension of the Stern-Gerlach method to measure the magnetic moment of atomic nucleii. In 1944 he was awarded the Nobel Prize in Physics \for his resonance method for recording the magnetic properties of atomic nuclei." Later, Felix Bloch1 and Edward Purcell extended this method for fluids and solids, and they were awarded the Nobel Prize in Physics in 1952 \for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith." It was much later when these methods were adapted to develop an imaging method. For this work, Peter Mansfield and Paul Lauterbur were awarded the Nobel Prize in Physiology or Medicine in 2003 \for their discoveries concerning magnetic resonance imaging". Isidor Rabi had to have an MRI scan performed in his later years. \I saw myself in that machine," he remarked, \I never thought my work would come to this." 3 A bird's eye view We begin our exploration of MR with a high-level description of the physics at play, in the process drawing a picture of how MRI machines work. In the later sections, we will go more in depth mathematically. There we will see the entry of quantum and statistical mechanics in describing the actual nuclear magnetic resonance. This will eventually lead us to discuss the relevant differential equations. Let us develop the ideas in progression: 1. Proton spin The development of quantum mechanics led to the discovery of the spin. The spin is a quantum-mechanical property of elementary particles that corresponds to an intrinsic notion of angular momentum. Although it has no classical-mechanical analogue, the spin of a charged particle induces a magnetic moment in the same way a loop of electric current has a magnetic moment. This magnetic moment allows the particle to interact with external magnetic fields. As a consequence of the spin of protons, atomic nucleii also have spin. In particular, for elements with odd atomic number, the resulting nuclear spin is nonzero2. Throughout these notes, we will focus our attention to hydrogen, as its nucleus is a single proton. The quantum 1 1 spin number is either + 2 or 2 , and the sign corresponds the orientation of the magnetic moment. − 2. External magnetic field MRI machines are engineered to create very strong magnetic fields3. When the magnetic 1Felix Bloch was a member of the Department of Physics at Stanford University. For more details about this, please visit http://www.stanford.edu/dept/physics/history/. 2This is because, roughly speaking, for elements with even atomic number, the spins of the protons in the nucleus cancel each other out. 3The intensity is usually between 1.5T and 5T. For comparison, the strength of the Earth's magnetic field is roughly 5 × 10−5T. 2 (a) spin-up + 1 (b) spin-down 1 2 − 2 Figure 1: A hydrogen nucleus with one of two quantum spin numbers. In each illustration we see the axis of rotation in black, which is the direction of the magnetic moment, as well as the direction of spin in blue. moment of the proton is placed in such a field, it experiences torque. Note this is a consequence of the proton's spin, because it was the spin that gave the magnetic moment. The induced angular momentum causes the proton to precess (i.e. spin about an axis that is itself rotating with respect to some fixed axis). The axis of revolution is the direction of the magnetic field, while the axis of spin is again the direction of the magnetic moment. The precession is called Larmor precession, and its frequency (that is, the rate of revolution) is known as Larmor frequency. When we consider not just one proton but many, we shall see that there is a slight surplus of those whose spins are aligned with the magnetic field, meaning they are in the so-called low-energy state. The protons whose spins are anti-aligned with the magnetic field are in a high-energy state. This surplus gives a net magnetization in the direction of the external magnetic field. (a) low-energy state (b) high-energy state Figure 2: The hydrogen nucleus is now subjected to a strong magnetic field, indicated by the vertical red arrow. The direction of revolution is dictated by the orientation of the magnetic moment (using the right-hand rule) and is shown in green. 3 3. Radio frequency field Statistical mechanics provides the means of determining the number of protons present from a measurement of the net magnetization. And if we detect varying proton densities4, we can distinguish the different materials from which they were measured. The trouble is that the rather weak net magnetization is in the direction of the much stronger external magnetic field. Consequently, it would be extremely difficult to distinguish such a small perturbation of an already strong field, especially considering the noise inherent in the measurement process. The approach of MRI machines then is to perturb the bulk magnetization in a direction perpendicular to the external field. This is done by pulsing the system with electromagnetic waves at its resonant frequency, which is exactly Larmor frequency! A key feature of the Larmor frequency is that it falls in the radio-frequency (RF) band. This is extremely convenient for two reasons5. First, an MRI machine does not need to generate high-frequency (so high-energy) pulses. And second, we are very experienced at controlling electromagnetic fields in the RF band. After all, our radio stations are doing it everyday. (a) closer to high-energy state (b) closer to low-energy state Figure 3: When a pulse of RF waves (depicted by the turquoise and purple sinusoids) at resonant frequency is introduced to the external magnetic field, magnetic moments align with the pulse. Those protons in the low-energy state are brought to a higher energy state, and vice versa. The magnetic moments continue to precess about the vertical magnetic field, but at a greater radius. 4. On-off excitation As depicted in Fig. 3, the RF pulse brings magnetic moments into alignment with the pulse, transverse to the original external field. This is been accomplished by the RF pulse at Larmor frequency producing torque on the magnetic moments. Now the direction of the net magnetization is perpendicular to the magnetic field. Furthermore, since there was a surplus of nuclei in the low-energy state, the new alignment yields a net gain in energy. That is, the system is placed into a state of excitation. When the excitation pulse is turned off, the magnetic moments tend to decay toward their initial configurations. Energy is thus released as radiation that can be recorded to measure proton densities and ultimately produce an image. 4It is customary to refer to proton density, even though we are considering hydrogen nuclei. 5It is also inconvenient because you cannot listen to the radio during an MRI scan. 4 5. Gradient field Suppose we can, indeed, accomplish all that we have described thus far. There still remains a critical obstruction. While we may have measured the energy released with on-off excitation, we do not know from where it came. Constructing an image from completely aggregate measurements is thus impossible. The solution is to use a gradient magnetic field, that is, one whose strength varies with location. The Larmor frequency naturally varies with the intensity of the magnetic field, so when the strength of the magnetic field varies with location, so too does the resonant frequency.
Recommended publications
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging Permalink https://escholarship.org/uc/item/2fw343zm Author Halpern-Manners, Nicholas Wm Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging by Nicholas Wm Halpern-Manners A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alexander Pines, Chair Professor David Wemmer Professor Steven Conolly Spring 2011 Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging Copyright 2011 by Nicholas Wm Halpern-Manners 1 Abstract Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging by Nicholas Wm Halpern-Manners Doctor of Philosophy in Chemistry University of California, Berkeley Professor Alexander Pines, Chair Magnetic resonance has evolved into a remarkably versatile technique, with major appli- cations in chemical analysis, molecular biology, and medical imaging. Despite these successes, there are a large number of areas where magnetic resonance has the potential to provide great insight but has run into significant obstacles in its application. The projects described in this thesis focus on two of these areas. First, I describe the development and implementa- tion of a robust imaging method which can directly detect the effects of oscillating electrical currents. This work is particularly relevant in the context of neuronal current detection, and bypasses many of the limitations of previously developed techniques.
    [Show full text]
  • Thomas Precession and Thomas-Wigner Rotation: Correct Solutions and Their Implications
    epl draft Header will be provided by the publisher This is a pre-print of an article published in Europhysics Letters 129 (2020) 3006 The final authenticated version is available online at: https://iopscience.iop.org/article/10.1209/0295-5075/129/30006 Thomas precession and Thomas-Wigner rotation: correct solutions and their implications 1(a) 2 3 4 ALEXANDER KHOLMETSKII , OLEG MISSEVITCH , TOLGA YARMAN , METIN ARIK 1 Department of Physics, Belarusian State University – Nezavisimosti Avenue 4, 220030, Minsk, Belarus 2 Research Institute for Nuclear Problems, Belarusian State University –Bobrujskaya str., 11, 220030, Minsk, Belarus 3 Okan University, Akfirat, Istanbul, Turkey 4 Bogazici University, Istanbul, Turkey received and accepted dates provided by the publisher other relevant dates provided by the publisher PACS 03.30.+p – Special relativity Abstract – We address to the Thomas precession for the hydrogenlike atom and point out that in the derivation of this effect in the semi-classical approach, two different successions of rotation-free Lorentz transformations between the laboratory frame K and the proper electron’s frames, Ke(t) and Ke(t+dt), separated by the time interval dt, were used by different authors. We further show that the succession of Lorentz transformations KKe(t)Ke(t+dt) leads to relativistically non-adequate results in the frame Ke(t) with respect to the rotational frequency of the electron spin, and thus an alternative succession of transformations KKe(t), KKe(t+dt) must be applied. From the physical viewpoint this means the validity of the introduced “tracking rule”, when the rotation-free Lorentz transformation, being realized between the frame of observation K and the frame K(t) co-moving with a tracking object at the time moment t, remains in force at any future time moments, too.
    [Show full text]
  • A Beginner's Guide to Bloch Equation Simulations of Magnetic
    A Beginner’s Guide to Bloch Equation Simulations of Magnetic Resonance Imaging Sequences ML Lauzon, PhD Depts of Radiology and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada Seaman Family MR Research Centre, Calgary, AB, Canada [email protected] ABSTRACT Nuclear magnetic resonance (NMR) concepts are rooted in quantum mechanics, but MR imaging principles are well described and more easily grasped using classical ideas and formalisms such as Larmor precession and the phenomenological Bloch equations. Many textbooKs provide in-depth descriptions and derivations of the various concepts. Still, carrying out numerical Bloch equation simulations of the signal evolution can oftentimes supplement and enrich one’s understanding. And though it may appear intimidating at first, performing these simulations is within the realm of every imager. The primary objective herein is to provide novice MR users with the necessary and basic conceptual, algorithmic and computational tools to confidently write their own simulator. A brief background of the idealized MR imaging process, its concepts and the pulse sequence diagram are first provided. Thereafter, two regimes of Bloch equation simulations are presented, the first which has no radio frequency (RF) pulses, and the second in which RF pulses are applied. For the first regime, analytical solutions are given, whereas for the second regime, an overview of the computationally efficient, but often overlooked, Rodrigues’ rotation formula is given. Lastly, various simulation conditions of interest and example code snippets are given and discussed to help demonstrate how straightforward and easy performing MR simulations can be. INTRODUCTION Magnetic resonance (MR) imaging is one of the most versatile imaging modalities used clinically.
    [Show full text]
  • Magnetic Moment of a Spin, Its Equation of Motion, and Precession B1.1.6
    Magnetic Moment of a Spin, Its Equation of UNIT B1.1 Motion, and Precession OVERVIEW The ability to “see” protons using magnetic resonance imaging is predicated on the proton having a mass, a charge, and a nonzero spin. The spin of a particle is analogous to its intrinsic angular momentum. A simple way to explain angular momentum is that when an object rotates (e.g., an ice skater), that action generates an intrinsic angular momentum. If there were no friction in air or of the skates on the ice, the skater would spin forever. This intrinsic angular momentum is, in fact, a vector, not a scalar, and thus spin is also a vector. This intrinsic spin is always present. The direction of a spin vector is usually chosen by the right-hand rule. For example, if the ice skater is spinning from her right to left, then the spin vector is pointing up; the skater is rotating counterclockwise when viewed from the top. A key property determining the motion of a spin in a magnetic field is its magnetic moment. Once this is known, the motion of the magnetic moment and energy of the moment can be calculated. Actually, the spin of a particle with a charge and a mass leads to a magnetic moment. An intuitive way to understand the magnetic moment is to imagine a current loop lying in a plane (see Figure B1.1.1). If the loop has current I and an enclosed area A, then the magnetic moment is simply the product of the current and area (see Equation B1.1.8 in the Technical Discussion), with the direction n^ parallel to the normal direction of the plane.
    [Show full text]
  • Electron Spins in Nonmagnetic Semiconductors
    Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation in nonmagnetic semiconductors Physics of non-interacting spins 2 In non-magnetic semiconductors such as GaAs and Si, spin interactions are weak; To first order approximation, they behave as non-interacting, independent spins. • Zeeman Hamiltonian • Bloch sphere • Larmor precession ∗ • , , and • Bloch equation The Zeeman Hamiltonian 3 Hamiltonian for an electron spin in a magnetic field magnetic moment of an electron spin : magnetic moment : magnetic field : Landé g-factor (=2 for free electrons) : Bohr magneton 58 eV/T , ) : electronic charge : Planck constant : free electron mass : spin operator : Pauli operator The Zeeman Hamiltonian 4 Hamiltonian for an electron spin in a magnetic field magnetic moment of an electron spin : magnetic moment : magnetic field : Landé g-factor (=2 for free electrons) : Bohr magneton 2 58 eV/T : electronic charge : Planck constant : free electron mass : spin operator 2 : Pauli operator The energy eigenstates 5 Without loss of generality, we can set the -axis to be the direction of , i.e., 0,0, 1 Spin “up” |↑ |↑ 2 1 2 2 1 Spin “down” |↓ |↓ 2 1 2 2 Spinor notation and the Pauli operators 6 Quantum states are represented by a normalized vector in a Hilbert space Spin states are represented by 2D vectors Spin operators are represented by 2x2 matrices.
    [Show full text]
  • 4 Nuclear Magnetic Resonance
    Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I.
    [Show full text]
  • Optical Detection of Electron Spin Dynamics Driven by Fast Variations of a Magnetic Field
    www.nature.com/scientificreports OPEN Optical detection of electron spin dynamics driven by fast variations of a magnetic feld: a simple ∗ method to measure T1 , T2 , and T2 in semiconductors V. V. Belykh1*, D. R. Yakovlev2,3 & M. Bayer2,3 ∗ We develop a simple method for measuring the electron spin relaxation times T1 , T2 and T2 in semiconductors and demonstrate its exemplary application to n-type GaAs. Using an abrupt variation of the magnetic feld acting on electron spins, we detect the spin evolution by measuring the Faraday rotation of a short laser pulse. Depending on the magnetic feld orientation, this allows us to measure either the longitudinal spin relaxation time T1 or the inhomogeneous transverse spin dephasing time ∗ T2 . In order to determine the homogeneous spin coherence time T2 , we apply a pulse of an oscillating radiofrequency (rf) feld resonant with the Larmor frequency and detect the subsequent decay of the spin precession. The amplitude of the rf-driven spin precession is signifcantly enhanced upon additional optical pumping along the magnetic feld. Te electron spin dynamics in semiconductors can be addressed by a number of versatile methods involving electromagnetic radiation either in the optical range, resonant with interband transitions, or in the microwave as well as radiofrequency (rf) range, resonant with the Zeeman splitting1,2. For a long time, the optical methods were mostly represented by Hanle efect measurements giving access to the spin relaxation time at zero magnetic feld3. New techniques giving access both to the spin g factor and relaxation times at arbitrary magnetic felds have been very actively developed.
    [Show full text]
  • Griffith's Example 4.3: Larmor Precession We Will Be Considering the Spin of an Electron
    Griffith's Example 4.3: Larmor Precession We will be considering the spin of an electron. The operator for the component of spin in the rˆ = (sin cosijˆˆ sin sin cosˆ ) k cos sin ei cos(½ ) leading to Sˆ which has an eigen-spinor rˆ rˆ i i sin e cos sin(½ )e i rˆ sin(½ )e with eigenvalue ½ and with eigenvalue -½ . We can imagine a cos(½ ) state in which the spin is initially in the x-z plane and makes an angle relative to the cos(½ ) z axis so (0) . sin(½ ) First we consider an applied magnetic field in the z direction providing interaction ˆ ˆ energy: H Bkozo SB Bmos. Using the standard eigenstates of Sz, ½0 B ˆ o H 0½ Bo Note that the difference between the energies of the spin up and spin down states is Bo. We expect things to oscillate at frequencies corresponding to the energy differences so the frequency for this problem is Bo, the Larmor frequency. The frequencies associated with the two states have a magnitude of one-half of the Larmor frequency; the difference between the frequencies is the relevant frequency for oscillation of probability density or, in this case, precessing. The hamiltonian is diagonal so the spin z up and down states are the eigenfunctions. a ½it ½0 Bo a cos(½ )e Hiˆ it () t t b ½it 0½ Bo b t sin(½ )e where = Bo . The expectation values can be computed with the results: Sz(t) = cos() ( /2); Sx(t) = sin() ( /2) sin(t);Sy(t) = -sin() ( /2) cos(t) Exercise: Compute Sz(t) and Sx(t) for(t) given above.
    [Show full text]
  • II Spins and Their Dynamics
    For the spins to precess, and for us to detect them, II we need to somehow force them away from Spins and their equilibrium – for example, make them perpendicular to the main field: Dynamics Lecture notes by Assaf Tal B0 1. Excitation 1.1 WhyU Excite? If we do this and let them be, two things will Let us recant the facts from the previous lecture: happen: 1 1. We’re interested in the bulk 1. They will precess about B0 at a rate gB0. (macroscopic) magnetization. 2. Eventually they will return to equilibrium 2. When put in a constant magnetic field, because of thermal relaxation. This this bulk magnetization tends to align usually takes ~ 1sec, but can vary. itself along the field: Until they return to thermal equilibrium their signal is “up for grabs”, which is precisely the idea of a basic NMR/MRI experiment: B0 1. Excite the spins. 2. Measure until they return to sum equilibrium. What to exactly do with the measured signal and how to recover an image from it is something we’ll discuss in subsequent lectures. Meanwhile, let’s Microscopic Macroscopic just ask ourselves how can one excite a spin? That is, how can one tilt it from its equilibrium position along the main field and create an angle between 3. The macroscopic magnetization precesses them (usually 90 degrees, but not always)? about the external magnetic field. 1.2 TheU RF Coils In MRI, we can only detect a signal from the spins if they precess and therefore induce a current in Fortunately (or perhaps unfortunately), our our MRI receiver coils by Faraday’s law.
    [Show full text]
  • The Classical Bloch Equations
    The classical Bloch equations Martin Frimmer and Lukas Novotny ETH Zurich,€ Photonics Laboratory, 8093 Zurich,€ Switzerland (www.photonics.ethz.ch) (Received 13 October 2013; accepted 7 May 2014) Coherent control of a quantum mechanical two-level system is at the heart of magnetic resonance imaging, quantum information processing, and quantum optics. Among the most prominent phenomena in quantum coherent control are Rabi oscillations, Ramsey fringes, and Hahn echoes. We demonstrate that these phenomena can be derived classically by use of a simple coupled- harmonic-oscillator model. The classical problem can be cast in a form that is formally equivalent to the quantum mechanical Bloch equations with the exception that the longitudinal and the transverse relaxation times (T1 and T2) are equal. The classical analysis is intuitive and well suited for familiarizing students with the basic concepts of quantum coherent control, while at the same time highlighting the fundamental differences between classical and quantum theories. VC 2014 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4878621] I. INTRODUCTION offers students an intuitive entry into the field and prepares them with the basic concepts of quantum coherent control. The harmonic oscillator is arguably the most fundamental building block at the core of our understanding of both clas- sical and quantum physics. Interestingly, a host of phenom- II. THE MECHANICAL ATOM ena originally encountered in quantum mechanics and A. Equations of motion initially thought to be of purely quantum-mechanical nature have been successfully modelled using coupled classical har- Throughout this paper, we consider two oscillators, as monic oscillators.
    [Show full text]
  • Pulsed Nuclear Magnetic Resonance
    Pulsed Nuclear Magnetic Resonance Experiment NMR University of Florida | Department of Physics PHY4803L | Advanced Physics Laboratory References Theory C. P. Schlicter, Principles of Magnetic Res- Recall that the hydrogen nucleus consists of a onance, (Springer, Berlin, 2nd ed. 1978, single proton and no neutrons. The precession 3rd ed. 1990) of a bare proton in a magnetic field is a sim- ple consequence of the proton's intrinsic angu- E. Fukushima, S. B. W. Roeder, Experi- lar momentum and associated magnetic dipole mental Pulse NMR: A nuts and bolts ap- moment. A classical analog would be a gyro- proach, (Perseus Books, 1981) scope having a bar magnet along its rotational M. Sargent, M.O. Scully, W. Lamb, Laser axis. Having a magnetic moment, the proton Physics, (Addison Wesley, 1974). experiences a torque in a static magnetic field. Having angular momentum, it responds to the A. C. Melissinos, Experiments in Modern torque by precessing about the field direction. Physics, This behavior is called Larmor precession. The model of a proton as a spinning positive Introduction charge predicts a proton magnetic dipole mo- ment µ that is aligned with and proportional To observe nuclear magnetic resonance, the to its spin angular momentum s sample nuclei are first aligned in a strong mag- netic field. In this experiment, you will learn µ = γs (1) the techniques used in a pulsed nuclear mag- netic resonance apparatus (a) to perturb the where γ, called the gyromagnetic ratio, would nuclei out of alignment with the field and (b) depend on how the mass and charge is dis- to measure the small return signal as the mis- tributed within the proton.
    [Show full text]
  • MRI Notes 1: Page 1
    Noll (2006) MRI Notes 1: page 1 Notes on MRI, Part 1 Overview Magnetic resonance imaging (MRI) – Imaging of magnetic moments that result from the quantum mechanical property of nuclear spin. The average behavior of many spins results in a net magnetization of the tissue. The spins possess a natural frequency that is proportional to the magnetic field. This is called the Larmor relationship: ω = γB Any magnetization that is transverse (perpendicular) to an applied magnetic field B will precess around that B field at the Larmor frequency. In MRI there are 3 kinds of magnetic fields: 1. B0 – the main magnetic field 2. B1 – an RF field that excites the spins 3. Gx, Gy, Gz – the gradient fields that provide localization The major steps in a 1D MRI experiment are (we’ll do 2 and 3 acquisitions later): 1. Object to be imaged is placed into the main field, B0. Subsequently, the object develops a distribution of magnetization, m0(x,y,z), that is to be imaged. This magnetization is aligned with B0 (in the z-direction). 2. A rotating RF magnetic field, B1, is applied to tip the magnetization into the plane that is transverse to B0. While in this plane, the magnetization precesses about the main field at a Noll (2006) MRI Notes 1: page 2 frequency proportional to the strength of the main field (ω = γB). This precessing magnetization creates a voltage in a receive coil, which is acquired for subsequent processing. z v(t) v(t) B M t y ω0 x 3. Gradient magnetic fields are applied to set-up a one-to-one correspondence between spatial position and frequency.
    [Show full text]