Toxicity of Peganum Harmala: Review and a Case Report

Total Page:16

File Type:pdf, Size:1020Kb

Toxicity of Peganum Harmala: Review and a Case Report 0000-0000/02/11-1-4 IRANIAN JOURNAL OF PHARMACOLOGY & THERAPEUTICS Copyright © 2002 by Razi Institute for Drug Research (RIDR) IJPT 1:1-4, 2002 Toxicity of Peganum harmala: Review and a Case Report MASSOUD MAHMOUDIAN, HOSSEIN JALILPOUR and PIROOZ SALEHIAN Razi Institute for Drug Research (M.M.), Department of Pathology (H.J.), Emergency Ward of Firooz-Abadi Hospital (P.S.), Iran University of Medical Sciences, Tehran. Iran. Received May 6, 2002; Revised May 29, 2002; Accepted June 5, 2002 This paper is available online at http://ijpt.iums.ac.ir ABSTRACT Peganum harmala L. is a plant, which grows in semi-arid rangeland. The plant is used traditionally as an emmenagogue and an abortifacient agent in the Middle East and North Africa. All parts of plant are thought to be toxic and sever intoxication occurs in domestic animals. Digestive and nervous syndromes have been observed in animals that consume sub-lethal amount of the plant. The toxicated animal ap- pears in a narcotic state interrupted by occasional short period of excitement. Abortion is frequent in ani- mals that digest this plant in a dry year. While this plant has traditionally been used in Middle East, it shows toxic effects in human. A case of human overdose with P. harmala seeds is reported in this paper. Symptoms experienced by our patient found to be similar to what has been reported for domestic ani- mals. Keywords: abortion, human toxicity, animal toxicity, hallucination Plants and plant extracts have been used since the steppe areas and sandy soils. The plant is widely dis- dawn of civilization by mankind. The use of ethno- tributed in the Central Asia, North Africa and Middle botanical preparations for various reasons, justified or East and has been introduced in America and Australia. not, is still continued by various cultures all around the This plant is known as “Espand” in Iran, “Harmel” in world. Considering structural and biological diversity of North Africa and “African Rue”, “Mexican Rue” or terrestrial plants, they offer a unique renewable resource “Turkish Rue” in United States. It has alternately spaced for the discovery of potential new drugs and modern thong-like leaves, which have a strong deterrent odor medicine has developed a rational strategy for drug dis- when rumpled. Opposite to the leaves are solitary white covery which involves the study of plants and plant ma- flowers with green veins. terials based on their ethnobotanical usage [1]. How- The flowering period is March to April. The fruits ever, modern textbooks usually pay less attention to are globose capsules with 3 chambers containing many them and average medical practitioner is not aware of angular blackish seeds [2]. The plant is not usually their usage and toxicity, especially those remedies that grazed. Its bitter taste repels animals. However, when are used by cultures other than his own. Considering pasture is sparse, donkeys and other domestic animal current state of tourism and immigration there is no cul- may be attracted to and graze intermittently on this tural boundary in the world and any medical practitioner plant. All species are susceptible to poisoning from this may visit a patient who has used a drug, which he has plant, but dromedaries (camels) are the most often af- no knowledge of. The present article is a review of tox- fected [3]. icity and pharmacological properties of Peganum har- ACTIVE CONSTITUENTS mala L., which is used traditionally as an emmenagogue and an abortifacient agent in the Middle East and North The pharmacologically active compounds of P. Africa. harmala are several alkaloids, which are found espe- cially in the seeds and the roots. These include β- carbolines such as: harmine, harmaline (identical with BOTANICAL DESCRIPTION harmidine), harmalol and harman (Fig. 1) and quina- Peganum harmala L. (Zygophyllaceae) is a peren- zoline derivatives: vasicine and vasicinone. The alka- nial herbaceous, glabrous plant, which may grow to 30- loidal content of the unripe seeds is less than the ripe 100 cm. Its normal habitat is semi-arid rangeland, ones [4]. IJPT | Autumn 2002 | vol. 1 | no. 1 | 1-4 2 | IJPT | Autumn 2002 | vol. 1 | no. 1 Mahmoudian et al. Harmaline (harmidine). C13H15ON2 - First isolated by Harmine (banisterine). C13H12ON2 - It is present in P. Göbel [5] from the seeds and roots of P. harmala, this is harmala and in some species of Banisteia, viz., B. the major alkaloid of this plant. It crystallizes in color- caapi, Spruce., B. lutea and B. metallicolor. The alka- less or pale yellow prisms and is optically inactive. This loid is optically inactive and forms colorless rhombic compound is slightly soluble in water, alcohol and ether, prisms from methanol. It is slightly soluble in water, quite soluble in hot alcohol and dilute acids. Its hydro- alcohol or ether. Solutions of its salts show a deep blue chloride dihydrate, which crystallizes as yellow needles, fluorescence. Pharmacologically, harmine resembles is moderately soluble in water and alcohol. Harmaline is harmaline in its actions but is less toxic. The hydrochlo- almost twice as toxic as harmine and in moderate doses ride has been found to be highly active against Myco- causes tremors and clonic convulsions but with no in- bacterium tuberculosis [7]. crease in spinal reflex excitability [6]. Lethal doses Harmalol. C12H12ON2 - Which occurs in P. harmala bring about convulsions, which are soon followed by crystallizes from water as the trihydrate. It is freely motor paralysis due to the marked depressive action soluble in hot water, acetone or chloroform but only upon the central nervous system. Respiration is para- sparingly soluble in benzene. The alkaloid is unstable lyzed and a decrease in body temperature occurs. The when exposed to air. Its methyl ether is harmaline [7]. perfused heart is arrested in diastolic phase and the con- Harman. C12H10N2 - This related β-carboline alkaloid, tractions of smooth muscle are diminished with the ex- which is first isolated from the bark of Arariba rubra, ception of the uterus, which may be made to contract indigenous to Brazil; however its existence in P. har- more powerfully. Over a wide range of doses there is a mala is not reported. This alkaloid is crystallized from reduction in blood pressure due to a pronounced weak- several organic solvents as colorless prisms. It is readily ening of the heart muscle. soluble in methanol, alcohol, acetone, chloroform, or ether but only moderately so in hot water. It dissolves in mineral acids and exhibits a blue-violet fluorescence [7]. Vasicine (peganine). C H ON - This quinazoline N 13 15 2 N alkaloid was first isolated from the leaves of Adhatoda H CH vasica Nees by Hooper and subsequently discovered in 3 P. harmala under the name of Peganine. The base is Harmane optically inactive although the isolation of (-)-form from the fresh leaves of A. vasica and flowers and stems of P. harmala has been reported. The salts are readily ob- tained as crystals. The crude drug from A. vasica is used in India as a remedy for asthma and the pure alkaloid acts as a bronchodilator [8]. N Vasicinone. C11H10O2N2 - A further alkaloid present in H3CO N Adhatoda vasica Nees and P. harmala. The base forms H 22 CH3 colorless crystals from 95% alcohol. It has [α] -100° (c = 0.5 in CHCl3) and the UV spectrum has absorption Harmine maxima at 227, 272, 302 and 315 nm. The alkaloid yields crystalline salts with mineral acids. It is an active bronchodilator [8]. ANIMAL TOXICITY N All parts of plant are thought to be toxic. Intrave- H3CO N nous injection of harmine and harmaline (9 mg/kg) into H CH3 cattle have shown toxic effects such as accelerated Harmaline breathing and pulse and clonic muscular spasms [9]. The toxic doses of various alkaloids in different species are shown in the Table 1 [6]. All domesticated animals are susceptible to poisoning from P. harmala, camels especially young animals are the most affected in dry seasons [3]. There are reports of sever intoxication in N cattle [10], donkeys [11], sheep and horses [12]. Diges- HO N tive and nervous syndromes have been reported in ani- H CH3 mals that consume a sub-lethal amount of the plant [13]. The animal initially becomes prostrate and then ano- Harmalol rexia, hyper-salivation, vomiting and diarrhea occur. Usually, the nervous syndromes are predominant: the Fig. 1. Chemical structure of β-carboline alkaloids. first signs are excitability followed by muscular trem- bling and stiffness, an uneasy staggering gait, and accel- Toxicity of Peganum harmala ijpt.iums.ac.ir | 3 erated breathing. Standing is impossible and the animal served and the patient was taken to hospital. The signs goes into recumbency. The animal appears in a narcotic of P. harmala overdose comprised of hallucinations and state interrupted by occasional short periods of excite- neuro-sensorial syndromes, bradycardia and GI distur- ment. After a few hours, dyspnea and mydriasis are bances such as nausea and vomiting. noted. Frequent urination and subnormal temperature Para-clinical tests showed that the function of liver has also been reported in cattle [10]. Abortion fre- and kidney to be normal and the patient had a normal quently occurs. The course of the nervous syndrome is hematological picture. She was discharged from hospi- usually short and death follows within 30-36 hours after tal few hours later after signs of intoxication had disap- the onset of signs of CNS intoxication. The chronic in- peared. toxication of cattle is characterized by anorexia, rest- lessness, weakness of the hind limbs and knocking of the fetlock joint. CASE REPORT In postmortem examination of animal, no distinctive A 35 years old male patient, who was under treat- lesion is observed.
Recommended publications
  • Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
    Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level.
    [Show full text]
  • Basic Hypothesis and Therapeutics Targets of Depression: a Review
    ISSN: 2641-1911 DOI: 10.33552/ANN.2021.10.000738 Archives in Neurology & Neuroscience Review Article Copyright © All rights are reserved by Anil Kumar Basic Hypothesis and Therapeutics Targets of Depression: A Review Monika Kadian, Hemprabha Tainguriya, Nitin Rawat, Varnika Chib, Jeslin Johnson and Anil Kumar* Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh 160014, India *Corresponding author: Dr. Anil Kumar, PhD, Professor of Pharmacology, Phar- Received Date: May 11, 2021 macology division, University Institute of Pharmaceutical Sciences, Panjab Univer- sity, Chandigarh 160014, India. Published Date: June 07, 2021 Abstract Depression is a psychological disorder marked by emotional symptoms such as melancholy, anhedonia, distress mood, loss of interest in daily life activities, feeling of worthlessness, sleep disturbances and destructive tendencies. According to WHO, more than 264 million people from all randomage groups processes are suffering during with brain depression development. thus, Depression it is become is mainlya leading due cause to neurotransmitter of disability and imbalances, infirmity worldwide. HPA disturbances, It is estimated increased that oxidative 40% of riskand nitrosativefor depression damage, is genetic impairment and the in other glucose 60% metabolism, is non-genetic and whichmitochondrial involved dysfunction, acute & chronic etc. The stress, monoamine childhood hypothesis trauma, viral is based infections on attenuation and even of monoamines such as serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in the brain regions (hippocampus, limbic system and frontal cortex) that can cause depression like symptoms. Depression is also marked by increased level of corticotrophin-releasing hormone (CRH) and and impaired responsiveness to glucocorticoid hormone.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • Alhagi Maurorum
    Prepared By Jacob Higgs and Tim Higgs Class 1A EDRR- Early Detection Rapid Response Watch List Common crupina Crupina vulgaris African rue Peganum harmala Small bugloss Anchusa arvensis Mediterranean sage Salvia aethiopis Spring millet Milium vernale Syrian beancaper Zygophyllum fabago North Africa grass Ventenata dubia Plumeless thistle Carduus acanthiodes Malta thistle Centaurea melitensis Common Crupina Crupina vulgaris African rue Peganum harmala Small bugloss Anchusa arvensis Mediterranean sage Salvia aethiopis Spring millet Milium vernale Syrian beancaper Zygophyllum fabago North Africa grass Ventenata dubia Plumeless thistle Carduus acanthiodes Malta thistle Centaurea melitensis m Class 1B Early Detection Camelthorn Alhagi maurorum Garlic mustard Alliaria petiolata Purple starthistle Cantaurea calcitrapa Goatsrue Galega officinalis African mustard Brassica tournefortii Giant Reed Arundo donax Japanese Knotweed Polygonum cuspidatum Vipers bugloss Echium vulgare Elongated mustard Brassica elongate Common St. Johnswort Hypericum perforatum L. Oxeye daisy Leucanthemum vulgare Cutleaf vipergrass Scorzonera laciniata Camelthorn Alhagi maurorum Garlic mustard Alliaria petiolata Purple starthistle Cantaurea calcitrapa Goatsrue Galega officinalis African mustard Brassica tournefortii Giant Reed Arundo donax Japanese Knotweed Polygonum cuspidatum Vipers bugloss Echium vulgare Elongated mustard Brassica elongate Common St. Johnswort Hypericum perforatum L. Oxeye daisy Leucanthemum vulgare Cutleaf vipergrass Scorzonera laciniata Class 2 Control
    [Show full text]
  • Antimicrobial Activity of Peganum Harmala Fixed Oil.Pdf
    ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﯿﻢ Sudan University of Science and Technology Faculty of Science Department of Chemistry Antimicrobial Activity of Peganum Harmala Fixed Oil A Dissertation Submitted in Partial Fulfillment of the Requirements of the B.Sc (Hons.) Degree in Chemistry By: Elamein Elsadig Hamad Ismaeel Mergany Elnayer Osman Fathalrahman Mohamed Supervisor: Prof. Mohamed Abdel Karim Mohamed Oct.2016 1-Introduction 1.1-Natural products A natural product is a chemical compound or substance produced by a living organism—that is, found in nature.[2][3] In the broadest sense, natural products include any substance produced by life.[4][5] Natural products can also be prepared by chemical synthesis (both semi- synthesis and total synthesis) and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.[6]Within the field of organic chemistry, the definition of natural products is usually restricted to mean purified organic compounds isolated from natural sources that are produced by the pathways of primary or secondary metabolism.[7] Within the field of medicinal chemistry, the definition is often further restricted to secondary metabolites.[8][9] Secondary metabolites are not essential for survival, but nevertheless provide organisms that produce them an evolutionary advantage.[10] Many secondary metabolites are cytotoxic and have been selected and optimized through evolution for use as 1 "chemical warfare" agents against prey, predators, and competing organisms.[11] Natural products sometimes have pharmacological or biological activity that can be of therapeutic benefit in treating diseases.
    [Show full text]
  • Switch to Mania After Ayahuasca Consumption in a Man with Bipolar Disorder: a Case Report Alejandro G Szmulewicz1,2*, Marina P Valerio1 and Jose M Smith1
    Szmulewicz et al. International Journal of Bipolar Disorders (2015) 3:4 DOI 10.1186/s40345-014-0020-y CASE REPORT Open Access Switch to mania after ayahuasca consumption in a man with bipolar disorder: a case report Alejandro G Szmulewicz1,2*, Marina P Valerio1 and Jose M Smith1 Abstract Background: There is an increasing use of ayahuasca for recreational purposes. Furthermore, there is a growing evidence for the antidepressant properties of its components. However, there are no reports on the effects of this substance in the psychiatric setting. Harmaline, one of the main components of ayahuasca, is a selective and reversible MAO-A inhibitor and a serotonin reuptake inhibitor. Case report: We present the case of a man with bipolar disorder who had a manic episode after an ayahuasca consumption ritual. This patient had had at least one hypomanic episode in the past and is currently depressed. We discuss the diagnostic repercussion of this manic episode. Conclusion: There is lack of specificity in the diagnosis of substance-induced mental disorder. The knowledge of the pharmacodynamic properties of ayahuasca consumption allows a more physiopathological approach to the diagnosis of the patient. Keywords: Ayahuasca; Bipolar disorder; DSM 5; Switch to mania; MAO inhibitors Background oral biodisponibility increases, this interaction being the Ayahuasca is a psychotropic, hallucinogenic beverage, base of ayahuasca psychotropic effect (McKenna 2004). composed of a mixture of Amazonian plants. It is usu- ally consumed as an infusion with Banisteriopsis caapi Case presentation Psychotria viridis and (Guimaraes dos Santos 2010). The We present the case of a 30-year-old Argentinian man, B.
    [Show full text]
  • Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion and Pharmacokinetics
    TESI DOCTORAL HUMAN PHARMACOLOGY OF AYAHUASCA JORDI RIBA Barcelona, 2003 Director de la Tesi: DR. MANEL JOSEP BARBANOJ RODRÍGUEZ A la Núria, el Marc i l’Emma. No pasaremos en silencio una de las cosas que á nuestro modo de ver llamará la atención... toman un bejuco llamado Ayahuasca (bejuco de muerto ó almas) del cual hacen un lijero cocimiento...esta bebida es narcótica, como debe suponerse, i á pocos momentos empieza a producir los mas raros fenómenos...Yo, por mí, sé decir que cuando he tomado el Ayahuasca he sentido rodeos de cabeza, luego un viaje aéreo en el que recuerdo percibia las prespectivas mas deliciosas, grandes ciudades, elevadas torres, hermosos parques i otros objetos bellísimos; luego me figuraba abandonado en un bosque i acometido de algunas fieras, de las que me defendia; en seguida tenia sensación fuerte de sueño del cual recordaba con dolor i pesadez de cabeza, i algunas veces mal estar general. Manuel Villavicencio Geografía de la República del Ecuador (1858) Das, was den Indianer den “Aya-huasca-Trank” lieben macht, sind, abgesehen von den Traumgesichten, die auf sein persönliches Glück Bezug habenden Bilder, die sein inneres Auge während des narkotischen Zustandes schaut. Louis Lewin Phantastica (1927) Agraïments La present tesi doctoral constitueix la fase final d’una idea nascuda ara fa gairebé nou anys. El fet que aquest treball sobre la farmacologia humana de l’ayahuasca hagi estat una realitat es deu fonamentalment al suport constant del seu director, el Manel Barbanoj. Voldria expressar-li la meva gratitud pel seu recolzament entusiàstic d’aquest projecte, molt allunyat, per la natura del fàrmac objecte d’estudi, dels que fins al moment s’havien dut a terme a l’Àrea d’Investigació Farmacològica de l’Hospital de Sant Pau.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • Effect of Harmine on Nicotine‑Induced Kidney Dysfunction in Male Mice
    [Downloaded free from http://www.ijpvmjournal.net on Tuesday, June 25, 2019, IP: 94.199.136.196] Original Article Effect of Harmine on Nicotine‑Induced Kidney Dysfunction in Male Mice Abstract Mohammad Reza Background: The nicotine content of cigarettes plays a key role in the pathogenesis of kidney Salahshoor, disease. Harmine is a harmal‑derived alkaloid with antioxidant properties. This study was Shiva Roshankhah, designed to evaluate the effects of harmine against nicotine‑induced damage to the kidneys of mice. Methods: In this study, 64 male mice were randomly assigned to eight groups: saline and Vahid Motavalian, nicotine‑treated groups (2.5 mg/kg), harmine groups (5, 10, and 15 mg/kg), and nicotine (2.5 mg/ Cyrus Jalili kg) + harmine‑treated groups (5, 10, and 15 mg/kg). Treatments were administered intraperitoneally Department of Anatomical daily for 28 days. The weights of the mice and their kidneys, kidney index, glomeruli characteristics, Sciences, Medical School, thiobarbituric acid reactive species, antioxidant capacity, kidney function indicators, and serum Kermanshah University of nitrite oxide levels were investigated. Results: Nicotine administration significantly improved kidney Medical Sciences, Daneshgah Ave., Taghbostan, malondialdehyde (MDA) level, blood urea nitrogen (BUN), creatinine, and nitrite oxide levels and Kermanshah, Iran decreased glomeruli number and tissue ferric reducing/antioxidant power (FRAP) level compared to the saline group (P < 0.05). The harmine and harmine + nicotine treatments at all doses significantly reduced BUN, kidney MDA level, creatinine, glomerular diameter, and nitrite oxide levels and increased the glomeruli number and tissue FRAP level compared to the nicotine group (P < 0.05). Conclusions: It seems that harmine administration improved kidney injury induced by nicotine in mice.
    [Show full text]
  • Harmine and Imipramine Promote Antioxidant Activities in Prefrontal Cortex and Hippocampus
    RESEArcH PAPER RESEArcH PAPER Oxidative Medicine and Cellular Longevity 3:5, 325-331; September/October 2010; © 2010 Landes Bioscience Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus Gislaine Z. Réus,1 Roberto B. Stringari,1 Bruna de Souza,2 Fabrícia Petronilho,2 Felipe Dal-Pizzol,2 Jaime E. Hallak,3 Antônio W. Zuardi,3 José A. Crippa3 and João Quevedo1,* 1Laboratório de Neurociências; and 2Laboratório de Fisiopatologia Experimental; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM); Programa de Pós-Graduação em Ciências da Saúde; Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma, SC Brazil; 3Departamento de Neurociências e Ciências do Comportamento; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM); Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP Brazil Key words: harmine, imipramine, reactive oxygen species, antioxidants activity, depression A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the β-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus.
    [Show full text]
  • Lali Kintsurashvili
    Lali Kintsurashvili Personal information Contact Details ID Number: 01024041567 Email address: [email protected] Full name: Lali Kintsurashvili Call number: 599407944 Gender: Female Country: საქართველო (Georgia) Date of birth: 04.09.1958 City: Tbilisi Citizenship: საქართველო (Georgia) Address: Tbilisi 0159, P. Sarajishvili 36 st. Languages Language Writing Reading Speaking French A1 A2 A1 Latin B1 B1 A2 Russian C2 C1 C2 English B1 B1 B1 ქართული (Georgian) C2 C2 C2 Education Academic degree Academic Degree: Doctoral/PhD, Ed.D or other equivalent Year obtained: 24.12.1997 Education Start End Academic Degree Name of the Institution Country Major discipline year year Doctoral/PhD, Ed.D or Institute of Pharmacochemistry Georgian საქართველო Pharmacy: Pharmaceutical chemistry 1982 1986 other equivalent Academy of Sciences (postgraduate studies) (Georgia) and Pharmakognosy, restr. 15.00.02 Master/MS, MA, MR, MBA, m.Ed or other Tbilisi State Medical Institute საქართველო Pharmacy 1976 1981 equivalent (Georgia) Projects Completed projects Project Start Project title Position head Date End Date Donor N 843/07 In Georrgian National Scientific fund financed by the cjmpetition GNSF/ ST06/6-102" Blood formation organ function assistant Inga Iovel Kutateladze sttimulatory vegetable containing of alkaloid new drug form shapes performerdadeshidze10.04.200625.12.2008 institute of of foundation biodegradable Pharmakochhhhhhemistry Scientific Fields Main Field Field: 3. Medical and health sciences Sub-Field: 3.1 Basic medicine Subject area: 3.1.5 Pharmacology and pharmacy Employment History Current place(s) of employment Name of the Workplace work Position Main responsibilities Start department Date Tbilisi State Department of The study of Georgian flora on alkaloids composition and detection of Medical university Phytochemistry, senior biologically and pharmcologically active substances.
    [Show full text]
  • PAPER Monoamine Oxidase Inhibition Is Unlikely to Be Relevant To
    International Journal of Obesity (2001) 25, 1454–1458 ß 2001 Nature Publishing Group All rights reserved 0307–0565/01 $15.00 www.nature.com/ijo PAPER Monoamine oxidase inhibition is unlikely to be relevant to the risks associated with phentermine and fenfluramine: a comparison with their abilities to evoke monoamine release{ IC Kilpatrick1*, M Traut2 and DJ Heal1 1Knoll Limited Research and Development, Nottingham, UK; and 2Knoll GmbH, 50 Knollstrasse, D-67061, Ludwigshafen, Germany OBJECTIVE AND DESIGN: It has been proposed that the anti-obesity agent, phentermine, may act in part via inhibition of monoamine oxidase (MAO). The ability of phentermine to inhibit both MAOA and MAOB in vitro has been examined along with that of the fenfluramine isomers, a range of selective serotonin reuptake inhibitors and sibutramine and its active metabolites. RESULTS: In rat brain, harmaline and lazabemide showed potent and selective inhibition of MAOA and MAOB, their respective target enzymes, with IC50 values of 2.3 and 18 nM. In contrast, all other drugs examined were only weak inhibitors of MAOA and MAOB with IC50 values for each enzyme in the moderate to high micromolar range. For MAOA, the IC50 for phentermine was estimated to be 143 mM, that for S( þ )-fenfluramine, 265 mM and that for sertraline, 31 mM. For MAOB, example IC50s were as follows: phentermine (285 mM), S( þ )-fenfluramine (800 mM) and paroxetine (16 mM). Sibutramine was unable to inhibit either enzyme, even at its limit of solubility. CONCLUSION: We therefore suggest that MAO inhibition is unlikely to play a role in the pharmacodynamic properties of any of the tested drugs, including phentermine.
    [Show full text]