The Maintenance and Generation of Freshwater Diversity from the Local to the Global Scale

Total Page:16

File Type:pdf, Size:1020Kb

The Maintenance and Generation of Freshwater Diversity from the Local to the Global Scale THE MAINTENANCE AND GENERATION OF FRESHWATER DIVERSITY FROM THE LOCAL TO THE GLOBAL SCALE By Patrick J. Hanly A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Integrative Biology – Doctor of Philosophy Ecology, Evolutionary Biology, and Behavior – Dual Major 2017 ABSTRACT THE MAINTENANCE AND GENERATION OF FRESHWATER DIVERSITY FROM THE LOCAL TO THE GLOBAL SCALE By Patrick J. Hanly The distribution of biological diversity is markedly uneven across the world. Despite the seemingly endless variety of forms and adaptations that have evolved and continue to evolve, large differences in the numbers and characteristics of species remain among locales. These differences are often not random; e.g., the Earth’s tropics are disproportionately rich in the diversity of life and large areas harbor more species than small areas. Observations of these general biogeographic patterns are some of the oldest contributions by early naturalists and ecologists, yet explanations for these patterns are a recurring topic of debate. Generality of pattern (with room for exceptions to the rule) has been reached for large-scale gradients in diversity but not generality of the theories that underlie these patterns. Unlike diversity at the biogeographic scale, even the generality of pattern at the local scale of species interactions remains elusive. Although numerous investigations into how potential drivers of local diversity such as productivity, isolation, and disturbance influence diversity have been made, a unifying consensus to describe general patterns of local diversity has not emerged. Today, increasing emphasis is being placed on the importance of the interaction between local and regional scales in influencing local diversity. The thesis first introduces and summarizes attempts to describe and explain biodiversity patterns at both the local and regional scales. Chapter 1 describes a study of the role of dispersal and assembly history in influencing species diversity in natural and experimental pond communities of plankton under the metacommunity framework. A further test of the role of dispersal and assembly history is presented in Chapter 2 using experimental pond mesocosms. This study evaluates the role of ecosystem size on the assembly and structure of a multitrophic community of both plankton and macroinvertebrates while concurrently varying nutrient input rate and initial assembly. Chapter 3 empirically illustrates variation in the dormancy-dispersal strategies used by freshwater zooplankton that can lead to interspecific differences in the degree and type of dispersal limitation. In Chapter 4, I use the distribution of single lake endemic fish in the largest lakes in the world to estimate the relative contributions of lake surface area, age, and latitude on diversification. I dedicate this dissertation to my parents, Joseph and Ernestine. iv ACKNOWLEDGMENTS I am grateful for the years of support, guidance, and discussion from my advisor, Gary Mittelbach. May I be as giving to others, as warm-hearted, and as dedicated to the scientific pursuit in my own career. I also acknowledge comments and critique from my other committee members, Elena Litchman, Christopher Klausmeier, and Orlando Sarnelle. Finally, I thank my wife, Melanie, for her selfless support of me in all things. v TABLE OF CONTENTS LIST OF TABLES viii LIST OF FIGURES x INTRODUCTION 1 Chapters 1 & 3 1 Chapter 2 2 Chapter 4 4 LITERATURE CITED 6 CHAPTER ONE 10 THE INFLUENCE OF DISPERSAL ON THE REALIZED TRAJECTORY OF A POND METACOMMUNITY 10 Abstract 10 Introduction 11 Methods 14 Experimental design 14 Statistical analyses 17 Results 22 Natural pond community trajectory 22 Density dependence of plankton dispersal 23 Experimental mesocosm assembly 24 Discussion 25 Acknowledgements 33 APPENDIX 34 LITERATURE CITED 46 CHAPTER TWO 52 THE INFLUENCE OF ECOSYSTEM SIZE ON TROPHIC STRUCTURE AND DIVERSITY DURING AQUATIC COMMUNITY ASSEMBLY 52 Abstract 52 Introduction 54 Methods 56 Mesocosm experiment 56 Data formatting and manipulation prior to analysis 59 Structural equation modeling 60 Endpoint comparison of composition 60 Results 61 Effect of ecosystem size, nutrient input, and assembly status on diversity 61 Influences on food web structure 62 Temporal trends of effects on diversity and trophic structure 63 The observed species-area relationship 65 vi Discussion 65 Effect of ecosystem size on species richness 65 Effect of ecosystem size on trophic structure 69 Lack of nutrient input level effect 70 Conclusion 71 APPENDIX 73 LITERATURE CITED 99 CHAPTER THREE 104 A NEW LOOK AT THE ROLE OF EPHIPPIA AS A DORMANCY-DISPERSAL STRATEGY IN THE CLADOCERAN (SCAPHOLEBERIS MUCRONATA) 104 Abstract 104 Introduction 106 Methods 109 Survey of natural ponds and cladoceran dispersal assessment 109 Outdoor mesocosm experiment 109 Ephippia collection and hatching 112 Statistical analyses 112 Results 113 Pond survey 113 Mesocosm experiment 114 Discussion 116 APPENDIX 120 LITERATURE CITED 126 CHAPTER FOUR 130 SPECIATION AND THE LATITUDINAL DIVERSITY GRADIENT: INSIGHTS FROM THE GLOBAL DISTRIBUTION OF ENDEMIC FISH 130 Abstract 130 Introduction 131 Methods 134 Database construction 134 Analyses on lakes with age data 136 Multiple missing data imputation on the full lake dataset 136 Comparison to fish endemism patterns in rivers 138 Phylogenetic considerations and potential sampling bias 138 Results 140 Discussion 142 Acknowledgements 147 APPENDIX 148 LITERATURE CITED 171 vii LIST OF TABLES Table 1. Permutational multivariate analysis of variance (PERMANOVA) output table evaluating whether plankton composition differed between local communities and dispersers, as well whether the composition of dispersers was significantly different across sampling periods and location in the metacommunity. P-values < 0.05 are in bold. 35 Table 2. Similarity Percentage (SIMPER) results showing the species responsible for the greatest difference between the composition of local communities and dispersers, along with their percent contribution to this difference. The top ten species underrepresented in the dispersers relative to their metacommunity occupancies are shown above and the top ten overrepresented species are shown below. 36 Table 3. Fitted models describing the relationship between the metacommunity abundance of taxa within eight plankton taxonomic groups and their measured dispersal rates throughout the growing season. P-values < 0.05 are in bold. 37 Table 4. Linear model of the influence of treatments on the final macroinvertebrate species richness of communities. 74 Table 5. Linear model of the influence of treatments on the final macroinvertebrate density of communities. 75 Table 6. Linear model of the influence of treatments on the final zooplankton species richness of communities. 76 Table 7. Linear model of the influence of treatments on the final zooplankton density of communities. 77 Table 8. PERMANOVA of final zooplankton communities. 78 Table 9. PERMANOVA of final macroinvertebrate communities in the two largest mesocosms sizes. 79 Table 10. Slopes of the species-area relationship derived from the literature for freshwater groups with the range of surface areas used in each study. NA indicates a lack of a species-area relationship. 93 Table 11. List of taxa observed in the mesocosm experiment. 98 Table 12. Generalized linear model of the probability that a lake contains an endemic based on a missing data imputation of predictor variables for all 2,746 lakes. 160 viii Table 13. Generalized linear model of the number of endemics in a lake based on a missing data imputation of predictor variables for all 2,746 lakes. 161 Table 14. Generalized linear model of the probability that a river basin contains an endemic fish. Data from the Fish-SPRICH database. 162 Table 15. Generalized linear model predicting the number of endemic fish in a river basin. Data from the Fish-SPRICH database. 163 Table 16. Generalized linear model of the probability of a lake containing an endemic fish with the three largest African Great Lakes removed. 164 Table 17. Generalized linear model of the number of endemic fish in lakes with endemics with the three largest African Great Lakes removed. 165 Table 18. Generalized linear model of the probability of a lake containing an endemic fish with the eight largest African Great Lakes removed. 166 Table 19. Generalized linear model of the number of endemic fish in lakes with endemics with the eight largest African Great Lakes removed. 167 Table 20. Generalized linear model of the probability of a lake containing an endemic fish with the family Cichlidae removed. 168 Table 21. Generalized linear model of the number of endemic fish in lakes with endemics with the family Cichlidae removed. 169 Table 22. Distributional centers of the non-endemic native species and endemic fish for the 47 families containing at least one endemic fish species or subspecies in the 2,746 largest lakes in the world. 170 ix LIST OF FIGURES Figure 1. Non-metric multidimensional scaling (NMDS) ordination plot showing the difference in composition between local communities (green circles) and dispersers (blue crosses) across all sampling periods. The composition of the ten local communities on the final sampling date (i.e., the final metacommunity) is represented by the filled circles (black), which show a visible attraction toward the composition of dispersers that is confirmed by the subsequent analysis using the attraction coefficient (AC). 38 Figure 2. Boxplots
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • Testing Trade-Offs in Dispersal and Competition in a Guild of Semi-Aquatic Backswimmers
    Testing Trade-Offs in Dispersal and Competition in a Guild of Semi-Aquatic Backswimmers by Ilia Maria C. Ferzoco A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Ecology and Evolutionary Biology University of Toronto © Copyright 2019 by Ilia Maria C. Ferzoco Testing Trade-Offs in Dispersal and Competition in a Guild of Semi-Aquatic Backswimmers Ilia Maria C. Ferzoco Master of Science Graduate Department of Ecology and Evolutionary Biology University of Toronto 2019 Abstract Theory has proposed that a trade-off causing negative covariance in competitive and colonization abilities (the competition-colonization trade-off) is an important mechanism enabling coexistence of species across local and regional scales. However, empirical tests of this trade-off are limited, especially in naturalistic conditions with active dispersers; organisms capable of making their own movement decisions. I tested the competition-colonization trade-off in two co-occurring flight-capable semi-aquatic insect backswimmers (Notonecta undulata and Notonecta irrorata). Using field mesocosm experiments and laboratory experiments, I measured components of dispersal and competition to determine if and how the competition-colonization trade-off enables coexistence in this system. This thesis reveals that backswimmer species exhibited clear differences in dispersal behaviour and yet competition proved to be multi-faceted and context-dependent. This work suggests that in active dispersers, there is a great deal of complexity in competition and dispersal. Future studies of the competition-colonization trade-off in naturalistic communities should incorporate these complexities. ii Acknowledgments Thank you to my supervisor, Dr. Shannon McCauley, for her support, encouragement, and guidance throughout my studies.
    [Show full text]
  • SMITH B.Sc., University of British Columbia, 2005
    Drivers of Wetland Zooplankton Community Structure in a Rangeland Landscape of the Southern Interior of British Columbia by LINDSEY MARGARET SMITH B.Sc., University of British Columbia, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCES in the Department of Natural Resource Sciences Thesis examining committee: Brian Heise (Ph.D.) (Thesis Supervisor), Associate Professor, Natural Resource Sciences, Thompson Rivers University Darryl Carlyle-Moses (Ph.D.), Associate Professor, Geography & Environmental Studies, Thompson Rivers University Lauchlan Fraser (Ph.D.), Professor, Natural Resource Sciences, Thompson Rivers University Louis Gosselin (Ph.D.), Associate Professor, Biological Sciences, Thompson Rivers University Ian Walker (Ph.D.) (External Examiner), Professor, Biology, University of British Columbia-Okanagan May 2012 Thompson Rivers University Lindsey Margaret Smith, 2012 ii Thesis Supervisor: Brian Heise (Ph.D.) ABSTRACT Zooplankton play a vital role in aquatic ecosystems and communities, demonstrating community responses to environmental disturbances. Surrounding land use practices can impact zooplankton communities indirectly through hydrochemistry and physical environmental changes. This study examined the effects of cattle disturbance on zooplankton community structure in wetlands of the Southern Interior of British Columbia. Zooplankton samples were obtained from fifteen morphologically similar freshwater wetlands in the summer of 2009. Physical, chemical and biological characteristics of the wetlands were also assessed. Through the use of Cluster Analysis and Non-metric Multidimensional Scaling (NMDS), differences in community assemblages were found amongst wetlands. Correlations of environmental variables with NMDS axes and multiple regression analyses indicated that both cattle impact (measured by percent of shoreline impacted by cattle) and salinity heavily influenced community structure (species richness and composition).
    [Show full text]
  • Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
    Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce.
    [Show full text]
  • Fisheries and Aquaculture
    Ministry of Agriculture, Livestock and Irrigation 7. GOVERNMENT OF THE REPUBLIC OF THE UNION OF MYANMAR Formulation and Operationalization of National Action Plan for Poverty Alleviation and Rural Development through Agriculture (NAPA) Working Paper - 4 FISHERIES AND AQUACULTURE Yangon, June 2016 5. MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture TABLE OF CONTENTS ACRONYMS 3 1. INTRODUCTION 4 2. BACKGROUND 5 2.1. Strategic value of the Myanmar fisheries industry 5 3. SPECIFIC AREAS/ASPECTS OF THEMATIC AREA UNDER REVIEW 7 3.1. Marine capture fisheries 7 3.2. Inland capture fisheries 17 3.3. Leasable fisheries 22 3.4 Aquaculture 30 4. DETAILED DISCUSSIONS ON EACH CULTURE SYSTEM 30 4.1. Freshwater aquaculture 30 4.2. Brackishwater aquaculture 36 4.3. Postharvest processing 38 5. INSTITUTIONAL ENVIRONMENT 42 5.1. Management institutions 42 5.2. Human resource development 42 5.3. Policy 42 6. KEY OPPORTUNITIES AND CONSTRAINTS TO SECTOR DEVELOPMENT 44 6.1. Marine fisheries 44 6.2. Inland fisheries 44 6.3. Leasable fisheries 45 6.4. Aquaculture 45 6.5. Departmental emphasis on management 47 6.6. Institutional fragmentation 48 6.7. Human resource development infrastructure is poor 49 6.8. Extension training 50 6.9. Fisheries academies 50 6.10. Academia 50 7. KEY OPPORTUNITIES FOR SECTOR DEVELOPMENT 52 i MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture 7.1. Empowerment of fishing communities in marine protected areas (mpas) 52 7.2. Reduction of postharvest spoilage 52 7.3. Expansion of pond culture 52 7.4.
    [Show full text]
  • Ecologically Sound Mosquito Management in Wetlands. the Xerces
    Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano and Scott Hoffman Black The Xerces Society FOR INVERTEBRATE CONSERVATION Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano Scott Hoffman Black The Xerces Society for Invertebrate Conservation Oregon • California • Minnesota • Michigan New Jersey • North Carolina www.xerces.org The Xerces Society for Invertebrate Conservation is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citi- zens to implement conservation programs worldwide. The Society uses advocacy, education, and ap- plied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices in California, Minnesota, Michigan, New Jersey, and North Carolina. © 2013 by The Xerces Society for Invertebrate Conservation Acknowledgements Our thanks go to the photographers for allowing us to use their photos. Copyright of all photos re- mains with the photographers. In addition, we thank Jennifer Hopwood for reviewing the report. Editing and layout: Matthew Shepherd Funding for this report was provided by The New-Land Foundation, Meyer Memorial Trust, The Bul- litt Foundation, The Edward Gorey Charitable Trust, Cornell Douglas Foundation, Maki Foundation, and Xerces Society members.
    [Show full text]
  • Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water As Vectors for Non-Indigenous Species Introductions to the Great Lakes
    A Final Report for the Project Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-indigenous Species Introductions to the Great Lakes Principal Investigators: Thomas Johengen, CILER-University of Michigan David Reid, NOAA-GLERL Gary Fahnenstiel, NOAA-GLERL Hugh MacIsaac, University of Windsor Fred Dobbs, Old Dominion University Martina Doblin, Old Dominion University Greg Ruiz, Smithsonian Institution-SERC Philip Jenkins, Philip T Jenkins and Associates Ltd. Period of Activity: July 1, 2001 – December 31, 2003 Co-managed by Cooperative Institute for Limnology and Ecosystems Research School of Natural Resources and Environment University of Michigan Ann Arbor, MI 48109 and NOAA-Great Lakes Environmental Research Laboratory 2205 Commonwealth Blvd. Ann Arbor, MI 48105 April 2005 (Revision 1, May 20, 2005) Acknowledgements This was a large, complex research program that was accomplished only through the combined efforts of many persons and institutions. The Principal Investigators would like to acknowledge and thank the following for their many activities and contributions to the success of the research documented herein: At the University of Michigan, Cooperative Institute for Limnology and Ecosystem Research, Steven Constant provided substantial technical and field support for all aspects of the NOBOB shipboard sampling and maintained the photo archive; Ying Hong provided technical laboratory and field support for phytoplankton experiments and identification and enumeration of dinoflagellates in the NOBOB residual samples; and Laura Florence provided editorial support and assistance in compiling the Final Report. At the Great Lakes Institute for Environmental Research, University of Windsor, Sarah Bailey and Colin van Overdijk were involved in all aspects of the NOBOB shipboard sampling and conducted laboratory analyses of invertebrates and invertebrate resting stages.
    [Show full text]
  • Rodolfo Mei Pelinson
    Rodolfo Mei Pelinson Efeitos de processos locais e do isolamento espacial na estruturação de comunidades aquáticas: uma simulação da intensificação no uso da terra Effects of local processes and spatial isolation on freshwater community assembly: a simulation of land- use intensification São Paulo 2020 Rodolfo Mei Pelinson Efeitos de processos locais e do isolamento espacial na estruturação de comunidades aquáticas: uma simulação da intensificação no uso da terra Effects of local processes and spatial isolation on freshwater community assembly: a simulation of land- use intensification Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Ecologia. Orientador: Prof. Dr. Luis Cesar Schiesari São Paulo 2020 Ficha Catalográfica Pelinson, Rodolfo Mei Efeitos de processos locais e isolamento espacial na estruturação de comunidades aquáticas : uma simulação da intensificação no uso da terra. Rodolfo Mei Pelinson ; orientador Luis Cesar Schiesari -- São Paulo, 2020. 151 f. Tese (Doutorado) – Instituto de Biociências da Universidade de São Paulo. Departamento de Ecologia. 1. Metacomunidade. 2. Agroquímicos. 3. Impactos da Aquacultura. 4. Impactos da Agricultura. 5. Cascatas Tróficas. I. Schiesari, Luis Cesar. II. Título. Bibliotecária responsável pela catalogação: Elisabete da Cruz Neves. CRB - 8/6228. Comissão Julgadora: Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Luis Schiesari Orientador(a) Dedicatória Dedico esta tese aos pais Ione e Nelson Agradecimentos Primeiro agradeço a todos que diretamente tornaram esse trabalho possível: o Ao meu orientador, Luis Schiesari. Não tenho dúvida alguma que a escolha de orientador que fiz foi acertada.
    [Show full text]
  • First Record of Erethistes Hara (Hamilton, 1822) (Siluriformes : Erethistidae) from Madhya Pradesh, India
    Rec. zool. Surv. India: 110(Part-3) : 35-36, 2010 FIRST RECORD OF ERETHISTES HARA (HAMILTON, 1822) (SILURIFORMES : ERETHISTIDAE) FROM MADHYA PRADESH, INDIA J. THILAK AND PRAVEEN OJHA Zoological Survey of India, Central Zone Regional Centre 1681169, Vijay Nagar, Jabalpur-482 002 (Madhya Pradesh) INTRODUCTION as being very like moth's wings. Head is osseous above, Siluriformes is an important order of Pisces, somewhat depressed. Mouth small, gill opening narrow, comprising of approximately 2,000 species pertaining eyes small. Nostrils close together, separated by a small to 30 families. They are mostly confined to freshwater, barbel. Barbels eight. First dorsal fin arising slightly but some are marine. Siluroid fishes are devoid of scales infront of the ventrals, having a serrated spine and five and are popularly termed as Cat-fishes, due to the or six branched rays. Adipose dorsal present. Ventral presence of feelers or long barbels arranged around with six rays. Pectoral with a serrated spine. the mouth. These fishes appear to use their feelers in While working on the Pisces of Madhya Pradesh, moving about in muddy places, and consequently have the authors came across two interesting specimens of less use for their eyes than forms that reside in clear 'Moth Cats' identified as Erethistes hara (Hamilton, water. In some freshwater as well as marine forms, the 1822) belonging to family Erethistidae. Globally, this males appear to carry the ova in their mouths perhaps family is represented by 6 genera and about 25 species until the young are produced. These fishes are credited (De Pinna, 1996). However, only 9 species are reported with causing poisonous wounds.
    [Show full text]
  • Zooplankton Species Diversity in the Temporary Wetland System of The
    ZOOPLANKTON SPECIES DIVERSITY IN THE TEMPORARY WETLAND SYSTEM OF THE SAVANNAH RIVER SITE, SOUTH CAROLINA, USA by MARCUS ALEXANDER ZOKAN (Under the Direction of JOHN M. DRAKE) ABSTRACT Understanding how diverse species communities develop and how the species within them coexist is one of the central questions in community ecology. The temporary wetland system occurring on the Savannah River Site near Aiken, South Carolina is home to the most species rich temporary wetland zooplankton assemblage known in the world. While previous research has documented this remarkable diversity, there has been little study directed at understanding how diversity is distributed at the landscape and local scales or on investigating potential mechanisms of what has led to the high richness of this system. The collection of studies presented here examine diversity patterns in the zooplankton community, links these patterns to spatial and temporal variation, experimentally tests the effects of two important environmental factors on diversity, and describes two new species. Results indicate that long hydroperiod lengths were associated with high species richness. Wetlands with similar species assemblages were generally closer together, suggesting the importance of dispersal. Over the course of a year, diversity increased during the spring and summer months and declined toward the fall, these changes were associated with low pH, low conductivity, and high water temperature. Vegetated areas within wetlands had greater diversity than did unvegetated areas, and diversity was particularly low in areas of decaying vegetation. Temporal comparisons provide evidence for distinct seasonal communities that arise every year. Experimental tests of the impact of hydroperiod length on diversity found that shorter hydroperiods resulted in reduced species richness, and communities dominated by just a few species.
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]
  • Abstracts Part 1
    375 Poster Session I, Event Center – The Snowbird Center, Friday 26 July 2019 Maria Sabando1, Yannis Papastamatiou1, Guillaume Rieucau2, Darcy Bradley3, Jennifer Caselle3 1Florida International University, Miami, FL, USA, 2Louisiana Universities Marine Consortium, Chauvin, LA, USA, 3University of California, Santa Barbara, Santa Barbara, CA, USA Reef Shark Behavioral Interactions are Habitat Specific Dominance hierarchies and competitive behaviors have been studied in several species of animals that includes mammals, birds, amphibians, and fish. Competition and distribution model predictions vary based on dominance hierarchies, but most assume differences in dominance are constant across habitats. More recent evidence suggests dominance and competitive advantages may vary based on habitat. We quantified dominance interactions between two species of sharks Carcharhinus amblyrhynchos and Carcharhinus melanopterus, across two different habitats, fore reef and back reef, at a remote Pacific atoll. We used Baited Remote Underwater Video (BRUV) to observe dominance behaviors and quantified the number of aggressive interactions or bites to the BRUVs from either species, both separately and in the presence of one another. Blacktip reef sharks were the most abundant species in either habitat, and there was significant negative correlation between their relative abundance, bites on BRUVs, and the number of grey reef sharks. Although this trend was found in both habitats, the decline in blacktip abundance with grey reef shark presence was far more pronounced in fore reef habitats. We show that the presence of one shark species may limit the feeding opportunities of another, but the extent of this relationship is habitat specific. Future competition models should consider habitat-specific dominance or competitive interactions.
    [Show full text]