The Ocular Albinism Type 1 (OA1) GPCR Is Ubiquitinated and Its Traffic Requires Endosomal Sorting Complex Responsible for Transp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Tracking Melanosomes Inside a Cell to Study Molecular Motors and Their Interaction
Tracking melanosomes inside a cell to study molecular motors and their interaction Comert Kural*, Anna S. Serpinskaya†, Ying-Hao Chou†, Robert D. Goldman†, Vladimir I. Gelfand†‡, and Paul R. Selvin*§¶ *Center for Biophysics and Computational Biology and §Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and †Department of Cell and Molecular Biology, Northwestern University School of Medicine, Chicago, IL 60611 Communicated by Gordon A. Baym, University of Illinois at Urbana–Champaign, Urbana, IL, January 9, 2007 (received for review June 4, 2006) Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by my- osin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (Ϸ2 nm) and temporal (Ϸ1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retro- grade movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec. -
Role of Cdc42 in Melanosome Transfer 1443 Approximate Ratio of 1:1 in KGM
Research Article 1441 Filopodia are conduits for melanosome transfer to keratinocytes Glynis Scott, Sonya Leopardi, Stacey Printup and Brian C. Madden Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Author for correspondence (e-mail: [email protected]) Accepted 4 January 2002 Journal of Cell Science 115, 1441-1451 (2002) © The Company of Biologists Ltd Summary Melanosomes are specialized melanin-synthesizing cultured with keratinocytes induced a highly dendritic organelles critical for photoprotection in the skin. phenotype with extensive contacts between melanocytes Melanosome transfer to keratinocytes, which involves and keratinocytes through filopodia, many of which whole organelle donation to another cell, is a unique contained melanosomes. These results suggest a unique role biological process and is poorly understood. Time-lapse for filopodia in organelle transport and, in combination digital movies and electron microscopy show that filopodia with our previous work showing the presence of SNARE from melanocyte dendrites serve as conduits for proteins and rab3a on melanosomes, suggest a novel model melanosome transfer to keratinocytes. Cdc42, a small system for melanosome transfer to keratinocytes. GTP-binding protein, is known to mediate filopodia formation. Melanosome-enriched fractions isolated from Movies available on-line human melanocytes expressed the Cdc42 effector proteins PAK1 and N-WASP by western blotting. Expression of Key words: Melanosome, Melanocyte, Cdc42, Filopodia, constitutively active Cdc42 (Cdc42V12) in melanocytes co- Keratinocyte Introduction microscopy of cultured cells, which allowed direct Melanosomes are organelles unique to melanocytes that visualization of melanosome movement and modifiers of function in the synthesis of melanin, a complex pigment actin, microtubules and their motor proteins. -
Primary Cilia Membrane Assembly Is Initiated by Rab11 and Transport Protein Particle II (TRAPPII) Complex- Dependent Trafficking of Rabin8 to the Centrosome
Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex- dependent trafficking of Rabin8 to the centrosome Christopher J. Westlakea,1, Lisa M. Bayeb, Maxence V. Nachuryc, Kevin J. Wrighta, Karen E. Ervina, Lilian Phua, Cecile Chalounia, John S. Beckd,e, Donald S. Kirkpatricka, Diane C. Slusarskib, Val C. Sheffieldd, Richard H. Schellera,1, and Peter K. Jacksona,1 aGenentech, South San Francisco, CA 94080; Departments of bBiology and dPediatrics and eHoward Hughes Medical Institute, University of Iowa, Iowa City, IA 52242; and cDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 Contributed by Richard H. Scheller, December 18, 2010 (sent for review August 19, 2010) Sensory and signaling pathways are exquisitely organized in pri- Rab8 ciliary localization (3, 6) and its presence in Golgi/trans- mary cilia. Bardet-Biedl syndrome (BBS) patients have compromised Golgi membranes (7) suggest that Rab8 could participate in ciliary cilia and signaling. BBS proteins form the BBSome, which binds membrane assembly. Previously we reported Rabin8 at the cen- Rabin8, a guanine nucleotide exchange factor (GEF) activating the trosome (3), a localization that probably is important for Rab8 fi Rab8 GTPase, required for ciliary assembly. We now describe serum- ciliary traf cking. A candidate Rab8 GTPase activating protein regulated upstream vesicular transport events leading to centrosomal (GAP) (XM_037557) has been described and prevents cilia for- Rab8 activation and ciliary membrane formation. Using live micros- mation when overexpressed in cells; moreover, a catalytically in- copyimaging,we showthatupon serum withdrawalRab8 is observed active mutant localized to the cilia (6). An emerging mechanism for organizing vesicular transport to assemble the ciliary membrane in ∼100 min. -
Identification of a Novel GPR143 Mutation in A
Mao et al. BMC Ophthalmology (2021) 21:156 https://doi.org/10.1186/s12886-021-01905-7 CASE REPORT Open Access Identification of a novel GPR143 mutation in a large Chinese family with isolated foveal hypoplasia Xiying Mao†, Mingkang Chen†, Yan Yu, Qinghuai Liu, Songtao Yuan and Wen Fan* Abstract Background: Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. Case presentation: We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. Conclusions: In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143. Keywords: GPR143 mutation, Isolated foveal hypoplasia, OA1, Case report Background as the congenital idiopathic nystagmus [3–5]. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
GPR143 Is a Prognostic Biomarker Associated with Immune in Ltration
GPR143 is a Prognostic Biomarker Associated with Immune Inltration in Melanoma Zixuan Xing ( [email protected] ) Xi'an Jiaotong University School of Medicine Shaobo Wu Xi'an Jiaotong University Qijuan Zang Xi'an Jiaotong University School of Medicine Hao Lei Xi'an Jiaotong University Second Aliated Hospital Yi Wei Xi'an Jiaotong University Medical College First Aliated Hospital Chaonan Zhang Xi'an Jiaotong University Medical College First Aliated Hospital Bingling Dai Xi'an Jiaotong University School of Medicine Research Article Keywords: GPR143, SKCM, Immune inltration, Biomarker, TCGA, Bioinformatics Posted Date: May 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-430494/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: Skin cutaneous melanoma (SKCM) is considered one of the most aggressive and lethal cancers of the skin. G-protein coupled receptor 143 (GPR143), which has been reported to cause congenital nystagmus, belongs to the superfamily of G protein- coupled receptors. Methods and Results: We analyzed the expression of GPR143 and survival of SKCM patients in SKCM via Gene Expression Proling Interactive Analysis (GEPIA). Then, logistic regression and multivariate cox analysis was used to analyze the inuence of GPR143 expression on clinicopathological elements and survival. We explored the immune response of 22 TIICs in SKCM via CIBERSORT and used TIMER to assess the correlation of GPR143 expression and immune inltration level. Finally, we used gene set enrichment analysis (GSEA) to assess the TCGA dataset. The outcomes suggest that GPR143 expression in tumor samples is remarkedly higher than in normal samples and high GPR143 expression is associated with poorer prognosis. -
Dopaminergic Regulation of Insulin Secretion Investigated By
DOPAMINERGIC REGULATION OF INSULIN SECRETION INVESTIGATED BY FLUORESCENCE FLUCTUATION SPECTROSCOPY by Brittany Catherine Caldwell Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Engineering May, 2016 Nashville, Tennessee Approved by: Professor David Piston Professor Melissa Skala Professor John Gore Professor Hassane Mchaourab Professor Anne Kenworthy ACKNOWLEDGEMENTS I am very thankful to my advisor, Dave Piston, who provided me with challenging problems to solve and the methods with which to solve them. Going to the lab even on a challenging day was exciting with the lab environment Dave created. My committee members, Melissa Skala, John Gore, Hassane Mchaourab, and Anne Kenworthy provided me with excellent feedback that helped develop and strengthen my project. I am grateful for their time and patience. Working in the Piston Lab was a wonderful experience. I am thankful for all the current and previous lab members who made the lab a fun place to go each day. I owe most of my molecular biology knowledge to Alessandro Ustione who is a fantastic mentor and wonderful friend. I also want to thank Amy Elliott, Chris Reissaus, Troy Hutchens, and Zeno Lavagnino who provided helpful feedback and many laughs during my time in the Piston Lab. I am blessed with four parents who have supported me on this journey. Most importantly though, I must thank my mother who has always encouraged education, not just by words, but also by example. One of my earliest memories is dragging my children’s books over to the dining table where I watched her study so that I could be like her. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
GPR143 Gene G Protein-Coupled Receptor 143
GPR143 gene G protein-coupled receptor 143 Normal Function The GPR143 gene, also known as OA1, provides instructions for making a protein that is involved in the coloring (pigmentation) of the eyes and skin. This protein is made in the light-sensitive tissue at the back of the eye (the retina) and in skin cells. The GPR143 protein is part of a signaling pathway that controls the growth and maturation of melanosomes, which are cellular structures that produce and store a pigment called melanin. Melanin is the substance that gives skin, hair, and eyes their color. In the retina, this pigment also plays a critical role in normal vision. Health Conditions Related to Genetic Changes Ocular albinism More than 60 GPR143 mutations have been identified in people with the most common form of ocular albinism, which is called the Nettleship-Falls type or type 1. Most mutations alter the size or shape of the GPR143 protein. These genetic changes often prevent the abnormal protein from ever reaching melanosomes, where it is needed to control the growth of these pigment-containing structures. In other cases, the GPR143 protein reaches melanosomes normally but mutations prevent the protein from interacting with other molecules in its signaling pathway. Without functional GPR143 protein, melanosomes in skin cells and the retina can grow abnormally large. It is unclear how these giant melanosomes (macromelanosomes) are related to vision loss and other eye abnormalities in people with ocular albinism. Most forms of albinism result from a reduced amount of melanin pigment within cells. Researchers continue to study why ocular albinism occurs when cells in the retina appear to contain a substantial amount of melanin. -
Vimentin Intermediate Filaments in Fish Melanophores
Vimentin intermediate filaments in fish melanophores F. K. GYOEVA Institute of I'mlein Research, Academy of Scienc of the USSR, 142292 I'ushchino, Moscmv Region, USSR E. V. LEONOVA, V. I. RODIONOV and V. I. GELFAND* A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscmv State University, 119S99 Moscmv, USSR * Author for correspondence Summary The distribution and chemical composition of as has been found in other cell types. Trans- intermediate filaments in cultured melanophores mission electron microscopy confirmed the pres- of two teleost species - Gymnocorymbus ternetzi ence of intermediate filaments in melanophores. and Pterophyllum scalare - were studied by im- Immunoblotting experiments showed the pres- munofluorescence staining and immunoblotting ence of the intermediate filament protein vimen- techniques. The immunofluorescence staining of tin in melanophore lysates. Therefore, teleost the melanophores with monoclonal and poly- melanophores possess a developed radial system clonal antibodies to the intermediate filament of vimentin intermediate filaments. protein vimentin revealed a system of fibrils radiating from the cell centre. These fibrils were Key words: melanophore, intermediate filaments, resistant to 0-6M-KC1 and nocodazole treatments vimentin. Introduction be involved. Microtubules form a well-developed radial pattern in fish melanophores and their disruption Melanophores are highly specialized cells, containing a inhibits pigment granule movement (Schliwa, 1981; lot of pigment granules known as melanosomes. Stearns, 1984). In contrast to microtubules, the system Teleost melanophores can aggregate melanosomes to of actin microfilaments in melanophores is poorly the cell centre or disperse them throughout the cyto- developed. Sparse microfilaments have been found in plasm. These melanosome movements, which deter- the cell cortex and in the cell surface microvilli mine the colour changes of animals, are governed by (Schliwa et al.