USB Game Controller

Total Page:16

File Type:pdf, Size:1020Kb

USB Game Controller PR26 USB Game Controller Version 1.0 October 2009 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Cytron Technologies Incorporated with respect to the accuracy or use of such information or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Cytron Technologies’s products as critical components in life support systems is not authorized except with express written approval by Cytron Technologies. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. OVERVIEW Just connect, play and you learn - it's that simple. This document describes the development of Cytron Schematic and source code is provided. Technologies DIY (Do It Yourself) Project PR26. This firmware implements a standard USB game controller FEATURES with 12 inputs (4 directional buttons and 8 general purpose buttons) and 4 analog inputs. There are no PIC18F2550 drivers required, since USB standard defined device - 8-bit microcontroller with 22 I/O classes, this project using the human input device (HID) - Operate with 5V supply which allows user to tell the computer that the - Operating speed 20MHz connected USB device is a game controller. This - Full Speed USB 2.0 (12Mbit/s) interface project will be using PIC18F2550, push button and Joystick joystick to give a guideline to hobbyist on how to build - With 2-axis (x-axis and y-axis) and 1 push a standard USB Game Controller. The performance of button the USB Game Controller can be tested by using PC. Created by Cytron Technologies Sdn. Bhd. – All Rights Reserved ROBOT . HEAD to TOE PR26 – USB Game Controller SYSTEM OVERVIEW 12 Push Buttons PIC18F2550 HID USB interface Computer 2 Joysticks GENERAL DESCRIPTION More information on PIC18F2550 can visit the website PIC18F2550 at: Ideal for low power (nanoWatt) and connectivity http://ww1.microchip.com/downloads/en/DeviceDoc/3 applications that benefit from the availability of three 9632D.pdf serial ports: FS-USB (12 Mbit/s), I²C™ and SPI™ (up to 10Mbit/s) and an asynchronous (LIN capable) serial port (EUSART). Large amounts of RAM memory for HARDWARE buffering and Enhanced FLASH program memory This project will require following hardware: make it ideal for embedded control and monitoring applications that require periodic connection with a a. 1 x PIC18F2550 (legacy free) Personal Computer via USB for data b. 1 x PR26 Printed Circuit Board (PCB) upload/download and/or firmware updates. c. 12 x push button d. 2 x joystick Feature of the device: e. 1 x USB B type connector • High-Current Sink/Source: 25 mA/25 mA f. 1 x USB cable • Three External Interrupts g. 1 x 9V-12V power supply • Four Timer modules (Timer0 to Timer3) h. Related electronic components • Up to 2 Capture/Compare/PWM (CCP) modules: • Enhanced Capture/Compare/PWM (ECCP) Please refer to Appendix A for the board layout of module PR26. The board layout is provided free therefore • Enhanced USART module Cytron Technologies will not be responsible for any • 10-bit, up to 13-channel Analog-to-Digital further modification or improvement. Converter module (A/D) with Programmable Acquisition Time • Dual Analog Comparators with Input Multiplexing Interface joystick with PIC18F2550 • 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical • 1,000,000 Erase/Write Cycle Data EEPROM Memory typical • Self-Programmable under Software Control • Priority Levels for Interrupts • 8 x 8 Single-Cycle Hardware Multiplier • Extended Watchdog Timer (WDT) • Programming™ (ICSP™) via two pins - In-Circuit Debug (ICD) via two pins - Optional dedicated ICD/ICSP port (44-pin Figure 1 devices only) - Wide Operating Voltage Range (2.0V to 5.5V) The analog-to-digital (A/D) converter module has inputs for the 28pins PIC18F2550. This module allows conversion of an analog input signal to a corresponding Created by Cytron Technologies Sdn. Bhd. – All Rights Reserved ROBOT . HEAD to TOE PR26 – USB Game Controller 10-bit digital number but we only use 8-bit for this Since USB standard defined device classes, this project project. using the human input device (HID) which allows user The module has five registers: to tell the computer that the connected USB device is a • A/D Result High Register (ADRESH) game controller and has 2 joysticks and 12 buttons. • A/D Result Low Register (ADRESL) • A/D Control Register 0 (ADCON0) First of all, we have to set down the data in the HID • A/D Control Register 1 (ADCON1) Report Descriptor to tell the computer of what function • A/D Control Register 2 (ADCON2) the device has, and how many bytes of data needed to be sent back to the computer. For more detail about USB, please visit www.usb.org. The information on report descriptor will be explained more at software part later. Device Class Definition for Human Interface Devices (HID) The HID class device class uses the following standard USB descriptors: • Device Figure 2 • Configuration • Interface In this PR, we have 4 analog outputs from two • Endpoint joysticks (x-axis, y-axis, z-axis, z-rotation), so analog • String input pin of AN0-AN3 are connected to the 4 presets from joysticks. But make sure the ADC configuration USB Descriptor in the programming is correct. Each device class includes one or more class-specific descriptors. These descriptors differ from standard USB descriptors. A HID class device uses the following class-specific descriptors: HID, Report and Physical. • HID Descriptor The HID descriptor identifies the length and type of subordinate descriptors for a device. Figure 3 A/D converter module is enabled, by setting bit0 of ADCON0 as 1. Default ADCON1 as only 4 analog pins (AN0-AN3) are used. Use left justified for A/D Result Format Select bit by setting bit7 of ADCON2 as 1. For ADCON2, set ADCS2:ADCS0 (A/D Conversion Clock Select bits) as 101, while ACQT2:ACQT0 (A/D Acquisition Time Select bits) as 110, since the maximum device frequency that used is 20MHz. For reduce the noise (low pass filter), a capacitor (104) is added between the analog signal and GND for every analog input from joystick. More information on ADC configuration, please refer to PIC18F2550 datasheet at http://www.microchip.com. Figure 4 Interface HID Report Descriptor with • Report Descriptor joystick The Report descriptor is unlike other descriptors in that it is not simply a table of values. The length and content of a Report descriptor vary depending on the For this PR, we are going to implements a standard number of data fields required for the device’s report USB game controller with twelve inputs (four or reports. A Report descriptor is the complete set of directional buttons and eight general purpose buttons). all items for a device. By looking at a Report descriptor Created by Cytron Technologies Sdn. Bhd. – All Rights Reserved ROBOT . HEAD to TOE PR26 – USB Game Controller alone, an application knows how to handle incoming • Physical Descriptors data, as well as what the data could be used for. A Physical Descriptor is a data structure that provides The Report descriptor is made up of items that provide information about the specific part or parts of the information about the device. The first part of an item human body that are activating a control or controls. contains three fields: item type, item tag, and item size. For example, a physical descriptor might indicate that Together these fields identify the kind of information the right hand thumb is used to activate button 5. An the item provides. There are three item types: Main, application can use this information to assign Global, and Local. functionality to the controls of a device. There are five Main item tags currently defined: Note: Physical Descriptors are entirely optional. They • Input item tag: Refers to the data from one or add complexity and offer very little in return for most more similar controls on a device. For devices. However, some devices, particularly those example, variable data such as reading the with a large number of identical controls (for example, position of a single axis or a group of levers or buttons) will find that Physical Descriptors help array data such as one or more push buttons or different applications assign functionality to these switches. controls in a more consistent manner. • Output item tag: Refers to the data to one or more similar controls on a device such as setting the position of a single axis or a group To make a clearer picture of HID device class of levers (variable data). Or, it can represent descriptor structure, all of these things can be data to one or more LEDs (array data). combined as shown below. Understand the HID • Feature item tag: Describes device input and descriptor well will help you know more about this output not intended for consumption by the PR26. end user —for example, a software feature or Control Panel toggle. • Collection item tag: A meaningful grouping of Input, Output, and Feature items—for example, mouse, keyboard, joystick, and pointer. • End Collection item tag: A terminating item used to specify the end of a collection of items. A Report descriptor is the complete set of all items for a device. By looking at a Report descriptor alone, an application knows how to handle incoming data, as well as what the data could be used for. One or more fields of data from controls are defined by a Main item and further described by the preceding Global and Local items.
Recommended publications
  • Albere Albe 1
    a b 1 ALBERE ALBERE ALBERE ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH PRODUCT-LIST 2020 All Products Excluding Shipping Fees TM Price per Unit (or otherwise explained) 2 In Euro albere TM albere TM albereGamepads ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH a b 1 ALBERE ALBERE ALBERE ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ID CATEGORY TITLE TM 2 albere TM albere TM albere ALBERE ELECTRONICS GmbH GAMEPADS Lanjue USB GamePad 13001-S (PC) ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH GAMEPADS Tracer Gamepad Warrior PC GAMEPADS VR Bluetooth Gamepad White GAMEPADS Esperanza Vibration Gamepad USB Warrior PC/PS3 GAMEPADS Gembird JPD-UDV-01 GAMEPADS Competition PRO Powershock Controller (PS3/PC) GAMEPADS PDP Rock Candy Red GAMEPADS PC Joystick USB U-706 GAMEPADS Konix Drakkar Blood Axe GAMEPADS Gembird USB Gamepad JPD-UB-01 GAMEPADS Element GM-300 Gamepad GAMEPADS Intex DM-0216 GAMEPADS Esperanza Corsair Red GAMEPADS Havit HV-G69 GAMEPADS Nunchuck Controller Wii/Wii U White GAMEPADS Esperanza Fighter Black GAMEPADS Esperanza Fighter Red GAMEPADS VR Bluetooth Gamepad 383346582 GAMEPADS 744 GAMEPADS CO-100 GAMEPADS Shinecon SC-B01 GAMEPADS Gamepad T066 GAMEPADS Media-Tech MT1506 AdVenturer II GAMEPADS Scene It? Buzzers XBOX 360 Red GAMEPADS Media-Tech MT1507 Corsair II Black GAMEPADS Esperanza EGG107R Black/Red GAMEPADS Esperanza Wireless Gladiator Black GAMEPADS 239 GAMEPADS PowerWay USB GAMEPADS Nunchuck Controller Wii/Wii U Red GAMEPADS Powertech BO-23
    [Show full text]
  • Using Your Smartphone As a Game Controller to Your PC
    Bachelor Thesis Computer Science June 2013 Using your Smartphone as a Game Controller to your PC Marcus Löwegren Rikard Johansson School of Computing BTH-Blekinge Institute of Technology Address: 371 79 Karlskrona, Telephone: +46 455 38 50 00 This thesis is submitted to the School of Computing at Blekinge Institute of Technology in par- tial fulfillment of the requirements for the degree of Bachelor in Computer Science. The thesis is equivalent to 10 weeks of full time studies. Abstract Many people in the world today own a smartphone. Smartphones of today usually have an ad- vanced array of inputs in forms of tilting, touching and speaking, and outputs in forms of visual representation on the screen, vibration of the smartphone and speakers for sound. They also usu- ally have different kinds of connectivity in forms of WLAN, Bluetooth and USB. Despite this we are still not seeing a lot of interaction between computers and smartphones, especially within games. We believe that the high presence of smartphones amongst people combined with the ad- vanced inputs and outputs of the smartphone and the connectivity possibilities makes the smart- phone a very viable option to be used as a game controller for the PC. We experimented with this developing the underlying architecture for the smartphone to communicate with the PC. Three different games were developed that users tested to see if the smartphone’s inputs are good enough to make it suitable for such purpose. We also attempted to find out if doing this made the gaming experience better, or in other words increased the enjoyment, of a PC game.
    [Show full text]
  • The Ergonomic Development of Video Game Controllers Raghav Bhardwaj* Department of Design and Technology, United World College of South East Asia, Singapore
    of Ergo al no rn m u ic o s J Bhardwaj, J Ergonomics 2017, 7:4 Journal of Ergonomics DOI: 10.4172/2165-7556.1000209 ISSN: 2165-7556 Research Article Article Open Access The Ergonomic Development of Video Game Controllers Raghav Bhardwaj* Department of Design and Technology, United World College of South East Asia, Singapore Abstract Video game controllers are often the primary input devices when playing video games on a myriad of consoles and systems. Many games are sometimes entirely shaped around a controller which makes the controllers paramount to a user’s gameplay experience. Due to the growth of the gaming industry and, by consequence, an increase in the variety of consumers, there has been an increased emphasis on the development of the ergonomics of modern video game controllers. These controllers now have to cater to a wider range of user anthropometrics and therefore manufacturers have to design their controllers in a manner that meets the anthropometric requirements for most of their potential users. This study aimed to analyse the evolution of video game controller ergonomics due to increased focus on user anthropometric data and to validate the hypothesis that these ergonomics have improved with successive generations of video game hardware. It has analysed and compared the key ergonomic features of the SEGA Genesis, Xbox, Xbox 360, and PS4 controllers to observe trends in their development, covering a range of 25 years of controller development. This study compared the dimensions of the key ergonomic features of the four controllers to ideal anthropometric values that have been standardised for use in other handheld devices such as TV remotes or machinery controls.
    [Show full text]
  • An Isometric Joystick As a Pointing Device for Handheld Information Terminals
    An Isometric Joystick as a Pointing Device for Handheld Information Terminals Miika Silfverberg I. Scott MacKenzie Tatu Kauppinen Usability Group Department of Computer Science Usability Group Nokia Research Center, Finland York University, Canada Nokia Research Center, Finland Abstract embedded pointing device that is suitable for handheld Meeting the increasing demand for desktop-like appli- use. This work studies the applicability of the isometric cations on mobile products requires powerful interac- joystick to handheld usage. tion techniques. One candidate is GUI-style point-and- click interaction using an integrated pointing device 1.1 Isometric Joystick that supports handheld use. We tested an isometric joy- A joystick is a good candidate for handheld pointing. stick for this purpose. Two prototypes were built. They Since it is mounted in the device chassis, it cannot be were designed for thumb operation and included a sepa- lost, unlike a stylus. It is small and can be manipulated rate selection button. Twelve participants performed potentially with the same hand that holds the device. point-and-select tasks. We tested both one-handed and two-handed interaction, and selection using the separate The device studied herein is an isometric joystick. The selection button and the joystick’s integrated press-to- pointer is moved by applying force to the stick. The select feature. A notebook configuration served as a stick itself doesn't move, or moves very little – hence reference. Results for the handheld conditions, both the name "isometric". The most common input-output one-handed and two-handed, were just slightly off those mapping is known as “velocity-control”, whereby the for the notebook condition, suggesting that an isometric applied force controls the velocity of the pointer.
    [Show full text]
  • Evans, Gareth; Blenkhorn, Paul a Head Operated Joystick
    DOCUMENT RESUME ED 430 330 EC 307 177 AUTHOR Evans, Gareth; Blenkhorn, Paul TITLE A Head Operated Joystick--Experience with Use. PUB DATE 1999-03-00 NOTE 6p. PUB TYPE Reports Descriptive (141) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Accessibility (for Disabled); *Assistive Devices (for Disabled); *Input Output Devices; *Severe Disabilities; Use Studies IDENTIFIERS *Joysticks ABSTRACT This paper describes the development and evaluation of a low-cost head-operated joystick for computer users with disabilities that prevent them from using a conventional hand-operated computer mouse and/or keyboard. The paper focuses on three issues: first, the style of head movement required by the device; second, whether a head-operated device should work as an absolute positioning device or as a joystick; and, third, the accuracy required by the device. It finds that the device's "nose following" style of head movement is more accepted by users than alternatives; that users also preferred the joystick relative pointing device over absolute positioning devices; and that users did not notice inaccuracies inherent in the device's design, thus allowing production at a lower cost. (DB) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS ert BEEN GRANTED BY r1) el") EXPERIENCE WITHUSE ans A HEADOPERATEDJOYSTICK - TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Gareth Evans and PaulBlenkhorn 1 Manchester, UK, [email protected] of Computation, UMIST, Technology for DisabledPeople Unit, Department Introduction computer mouse and/orkeyboard, may use a head- Computer users who cannot use aconventional hand-operated computer and, by using anon-screen keyboard, totype operated mouse or joystickin order to control their user's head movements aretranslated into mouse pointer information.
    [Show full text]
  • Writing with a Joystick: a Comparison of Date Stamp, Selection Keyboard, and Edgewrite Jacob O
    Writing with a Joystick: A Comparison of Date Stamp, Selection Keyboard, and EdgeWrite Jacob O. Wobbrock, Brad A. Myers and Htet Htet Aung Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University Pittsburgh, Pennsylvania, USA {jrock, bam, hha}@cs.cmu.edu http://www.cs.cmu.edu/~edgewrite/ Abstract A joystick text entry method for game controllers and mobile phones would be valuable, since these devices often have joysticks but no conventional keyboards. But prevalent joystick text entry methods are slow because they are selection-based. EdgeWrite, a new joystick text entry method, is not based on selection but on gestures from a unistroke alphabet. Our experiment shows that this new method is faster, leaves fewer errors, and is more satisfying than date stamp and selection keyboard (two prevalent Figure 1. The Saitek P2500 Rumble Force Pad. Our experiment selection-based methods) for novices after minimal used the two thumbsticks and one of the silver buttons. practice. For more practiced users, our results show that EdgeWrite is at least 1.5 times faster than selection messenger-style text. With only selection-based text entry keyboard, and 2.4 times faster than date stamp. methods for game controllers, this can be awkward. Keywords: Text entry, text input, joystick, game controller, Mobile devices have also placed high demands on text game console, physical edges, corners, gestures, unistrokes. entry development. Numerous text entry methods have been investigated, including those driven by buttons, character 1 Introduction – Why Joystick Text Entry? recognition, virtual keyboards, thumbwheels, and voice. Joysticks have served as input devices since the earliest Many new handheld devices, such as the Ericsson T68i computers [7].
    [Show full text]
  • About Your SHIELD Controller SHIELD Controller Overview
    About Your SHIELD controller Your NVIDIA® SHIELD™ controller works with your SHIELD tablet and SHIELD portable for exceptional responsiveness and immersion in today’s hottest games. It is the first-ever precision controller designed for both Android™ and PC gaming. Your controller includes the following features: Console-grade controls Ultra-responsive Wi-Fi performance Stereo headset jack with chat support Microphone for voice search Touch pad for easy navigation Rechargeable battery and USB charging cable Your controller is compatible with the SHIELD portable and the SHIELD tablet. It can also be used as a wired controller for a Windows 7 or Windows 8 PC running GeForce Experience. Learn more about wired PC support here. Your controller cannot be used with other Android devices at this time. SHIELD controller Overview The SHIELD controller box includes one SHIELD controller, one USB charging cable, one Support Guide, and one Quick Start Guide. Shield controller D-pad NVIDIA button Android navigation and Start buttons A B X Y buttons Left thumbstick Right thumbstick Touchpad Volume control Turn on or Turn Off your controller How to Turn On the Controller Tap the NVIDIA button. How to Turn Off the Controller Hold the NVIDIA button for 6 seconds. The controller automatically turns off when you turn off the SHIELD device the controller is connected to. The controller also automatically turns off after 10 minutes of idle time. NOTE The controller stays on during video and music playback on the SHIELD device. This allows the controller to be active to control media playback. How to Connect Your Controller to a SHIELD Device Your controller is compatible with the SHIELD portable and the SHIELD tablet.
    [Show full text]
  • Android Based Area Web Monitoring
    EPJ Web of Conferences 68, 00002 (2014) DOI: 10.1051/epjconf/20146800002 C Owned by the authors, published by EDP Sciences, 2014 Android Based Area Web Monitoring Bayu Kanigoro, Afan Galih Salman, Jurike V Moniaga, Eric Chandra, and Zein Rezky Chandra Computer Science Program, School of Computer Science, Bina Nusantara University, Indonesia Abstract. The research objective is to develop an application that can be used in the monitoring of an area by using a webcam. It aims to create a sense of security on the user's application because it can monitor an area using mobile phone anywhere. The results obtained in this study is to create an area with a webcam monitoring application that can be accessed anywhere as long as the monitoring results have internet access and can also be accessed through Android Based Mobile Phone. 1 Introduction 2 Recent Works In the era of globalization, developments in information There are some discussions about web monitoring. technology plays an important role in various sectors of Details of the development of a simple webcam joystick, human life and mobile phone is a main actor in this era. a wireless, or rather cable less, and contactless pointing When it was becomes popular around 1990, it was only device by using a webcam and a simple flexible non- be used for voice communication between persons but electronic joystick for recording patient movement has now it has a very sophisticated ability which formerly been described in [1]. could only be done by computers which can be done by An efficient Omni directional surveillance system for mobile phone today which is known by the wider digital home security was proposed in [5].
    [Show full text]
  • Video Game Control Dimensionality Analysis
    http://www.diva-portal.org Postprint This is the accepted version of a paper presented at IE2014, 2-3 December 2014, Newcastle, Australia. Citation for the original published paper: Mustaquim, M., Nyström, T. (2014) Video Game Control Dimensionality Analysis. In: Blackmore, K., Nesbitt, K., and Smith, S.P. (ed.), Proceedings of the 2014 Conference on Interactive Entertainment (IE2014) New York: Association for Computing Machinery (ACM) http://dx.doi.org/10.1145/2677758.2677784 N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234183 Video Game Control Dimensionality Analysis Moyen M. Mustaquim Tobias Nyström Uppsala University Uppsala University Uppsala, Sweden Uppsala, Sweden +46 (0) 70 333 51 46 +46 18 471 51 49 [email protected] [email protected] ABSTRACT notice that very few studies have concretely examined the effect In this paper we have studied the video games control of game controllers on game enjoyment [25]. A successfully dimensionality and its effects on the traditional way of designed controller can contribute in identifying different player interpreting difficulty and familiarity in games. This paper experiences by defining various types of games that have been presents the findings in which we have studied the Xbox 360 effortlessly played with a controller because of the controller’s console’s games control dimensionality. Multivariate statistical design [18]. One example is the Microsoft Xbox controller that operations were performed on the collected data from 83 different became a favorite among players when playing “first person- games of Xbox 360.
    [Show full text]
  • Amazon Fire TV Game Controller User's Guide
    Amazon Fire TV Game Controller User’s Guide The Amazon Fire TV Game Controller is a wireless game controller that can be used to play games and control media on Fire TV devices. It can also be used to search for movies, apps and games. This short guide will familiarise you with all of the features and functionality of your new controller. Note: The Amazon Fire TV Game Controller is not shipped with all Amazon Fire TV devices and is not compatible with all games. For more information, please visit www.amazon.com/devicesupport. Installing batteries Before you can use your new Fire TV Game Controller, you must install the two AA batteries included in the box. Ensure you position the positive (+) and negative (-) ends as shown, and then put the compartment cover back on. When replacing the batteries, always use new 1.5V alkaline batteries or 1.2 NIMH rechargeable batteries. Once paired, your Fire TV Game Controller will go to sleep automatically after 2 minutes of inactivity to conserve battery life. When you pick it up again, your controller will wake up automatically and a series of LED lights will cycle on the front until the controller reconnects with Fire TV. Once connected, the LED lights will indicate the controller/player number for 10 seconds. For typical users, the controller will provide up to 90 hours of gameplay on a pair of alkaline AA batteries when not streaming audio for private listening. When using the audio streaming feature with headphones connected to the audio jack, you will get 24 hours of continuous use before needing to change the batteries.
    [Show full text]
  • Chapter 9. Input Devices
    Table of contents 9 Input devices .................................................................................................................9-1 9.1 Keyboards ............................................................................................................. 9-4 9.2 Fixed-function keys .............................................................................................. 9-6 9.3 Pointing devices.................................................................................................... 9-7 9.3.1 General........................................................................................................... 9-7 9.3.2 Mouse ............................................................................................................ 9-9 9.3.3 Joystick and trackball .................................................................................. 9-10 9.3.3.1 General..................................................................................................9-10 9.3.3.2 Hand-operated displacement joysticks .................................................9-10 9.3.3.3 Finger-operated displacement joysticks................................................9-11 9.3.3.4 Thumb tip and fingertip-operated displacement joysticks....................9-13 9.3.3.5 Hand-operated isometric joysticks........................................................9-13 9.3.3.6 Thumb tip and fingertip-operated isometric joysticks..........................9-14 9.3.3.7 Ball controls..........................................................................................9-14
    [Show full text]
  • Virtual Reality Controllers
    Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets By Summer Lindsey Bachelor of Arts Psychology Florida Institute of Technology May 2015 A thesis Submitted to the College of Aeronautics at Florida Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science In Aviation Human Factors Melbourne, Florida April 2017 © Copyright 2017 Summer Lindsey All Rights Reserved The author grants permission to make single copies. _________________________________ The undersigned committee, having examined the attached thesis " Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets," by Summer Lindsey hereby indicates its unanimous approval. _________________________________ Deborah Carstens, Ph.D. Professor and Graduate Program Chair College of Aeronautics Major Advisor _________________________________ Meredith Carroll, Ph.D. Associate Professor College of Aeronautics Committee Member _________________________________ Neil Ganey, Ph.D. Human Factors Engineer Northrop Grumman Committee Member _________________________________ Christian Sonnenberg, Ph.D. Assistant Professor and Assistant Dean College of Business Committee Member _________________________________ Korhan Oyman, Ph.D. Dean and Professor College of Aeronautics Abstract Title: Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets Author: Summer Lindsey Major Advisor: Dr. Deborah Carstens Virtual Reality (VR) is no longer just for training purposes. The consumer VR market has become a large part of the VR world and is growing at a rapid pace. In spite of this growth, there is no standard controller for VR. This study evaluated three different controllers: a gamepad, the Leap Motion, and a touchpad as means of interacting with a virtual environment (VE). There were 23 participants that performed a matching task while wearing a Samsung Gear VR mobile based VR headset.
    [Show full text]