Chaotic Mixing Analyses by Distribution Matrices
Total Page:16
File Type:pdf, Size:1020Kb
Bilder 14.02.2001 9:34 Uhr Seite 119 CHAOTIC MIXING ANALYSES BY DISTRIBUTION MATRICES Patrick D. Anderson and Han E. H. Meijer Materials Technology, Dutch Polymer Institute, Eindhoven University of Technology P. O. Box 513, 5600 MB Eindhoven, The Netherlands Fax: x31.40.2447355 E-mail: [email protected] and [email protected] Received: 31.5.2000, Final version: 7.6.2000 ABSTRACT Distributive fluid mixing in laminar flows is studied using the concept of concentration distribution mapping matri- ces, which is based on the original ideas of Spencer & Wiley [1], describing the evolution of the composition of two fluids of identical viscosity with no interfacial tension. The flow domain is divided into cells, and large-scale variations in composition are tracked by following the cell-average concentrations of one fluid using the mapping method of Kruijt et al. [2]. An overview of recent results is presented here where prototype two- and three-dimensional time- periodic mixing flows are considered. Efficiency of different mixing protocols are compared and for a particular ex- ample the (possible) influence of fluid rheology on mixing is studied. Moreover, an extension of the current method including the microstructure of the mixture is illustrated. Although here the method is illustrated making use of these simple flows, more practical, industrial mixers like twin screw extruders can be studied using the same approach. ZUSAMMENFASSUNG Die Vermischung von Flüssigkeiten in laminarer Strömung wird anhand der ”Concentration Distribution Mapping Matrice“-Methode, basierend auf den Arbeiten von Spencer & Wiley, untersucht [1]. Durch diese Methode wird die zeitliche Entwicklung der Zusammensetzung zweier Flüssigkeiten gleicher Viskosität ohne Grenzflächenspannung beschrieben. Hierfür wird der Strömungsbereich zunächst in Zellen unterteilt und anschließend wird die Veränderung der Zusammensetzung, durch das Verfolgen der zellengemittelten Konzentrationen eines der beiden Fluide mittels der ”Mapping Method“ nach Kruijt et al., beobachtet [2]. Dieser Beitrag gibt ein Überblick über neuere Resultate zu typischen zwei- und dreidimensionalen, zeitperiodischen Mischungströmungen. Die Effizienz verschiedener Misch- methoden wird verglichen und für ein ausgewähltes Beispiel wird der (mögliche) Einfluss der rheologischen Eigen- schaften der Flüssigkeiten auf den Mischungsvorgang untersucht. Ausserdem wird eine Erweiterung der Methode vorgestellt, die die Mikrostruktur der Mischung miteinbezieht. Obwohl diese Methode hier an einfachen Strö- mungssituationen illustriert wird, kann sie auch zur Untersuchung von mehr anwendungsorientierten, industriellen Mischern, wie dem Doppelwellenextruder verwendet werden. RÉSUMÉ Le mélange distributif de fluide dans les écoulements laminaires est étudié au moyen du concept de matrices de traçage de distributions de concentration, qui est basé sur les idées originales de Spencer & Wiley [1], décrivant l’évo- lution de la composition de deux fluides avec des viscosités identiques et sans tension interfaciale. Le domaine d’écoulement est divisé en cellules et les variations à grande échelle en composition sont suivies en estimant les con- centrations moyennes d’un des deux fluides à l’aide de la méthode de tracé de Kruijt et al. [2]. Une revue des résul- tats récents est ici présentée, où des écoulements de mélange prototypes à deux et trois dimensions et avec une dépendance temporelle périodique sont considérés. Les efficacités des différents protocoles de mélange sont com- parées et pour un exemple particulier, l’influence (éventuelle) de la rhéologie du fluide sur l’action de mélange est étudiée. De plus, une extension de la méthode, où la microstructure du mélange est incorporée, est présentée. Mal- gré le fait que nous donnions ici des exemples où la méthode est appliquée dans le cas d’écoulements simples, d’un point de vue plus pratique, des mélangeurs industriels, comme les extrudeurs à vis jumelles, peuvent être étudiés en utilisant une approche similaire. 1 INTRODUCTION study these flows are overviewed in this paper. It is well known that even for laminar flow at very Fluid mixing processes receive a considerable low Reynolds numbers mixing can lead to com- amount of recognition because of their import- plex flow patterns, and that the exposure of such ance in nature and industry. Although in many patterns may be understood by imploring the cases mixing is associated with turbulent fluid theory of dynamical systems [3]. The motion of motions, mixing of very viscous fluids constitutes passive particles in such a flow is described by the an important class of mixing occurrences. These set of ordinary differential equations, are typical for polymer blending, compounding, food processing etc, and some new models to xu˙ = (,)x t 1 © Appl. Rheol. 10, 3, 119-133 (2000) DOI: 10.1515/arh-2000-0008 Applied Rheology May/June 2000 119 Bilder 14.02.2001 9:34 Uhr Seite 120 Figure 1: Geometries of the 2D y and 3D cavity. T In the upper figure 1 during the first half of the period the top (back) wall is moved from left to right, -h 0 h x and in the second half of the period the opposite (front) wall moved from left to right. where x = (x, y, z) denotes the position vector and -1 This protocol is denoted as u the local Eulerian velocity. The amount of B the TB protocol. stretching is often used to characterise the qual- The scheme of the flow domain for the cubic cavity ity of mixing: and notation for possible motions of front and back Bu walls is denoted in the lower 2 figure; see text for Br explanation of the where I and L are the present and initial length Bl notation used. Fu of a material filament, respectively [4]. The effi- ciency of stretching in a two-dimensional flow Bd Fr ranges from 1/t where the flow is steady and the domain is closed, to exponential for a hyperbolic, Fl unbounded, chaotic, flow. In chaotic flows the Fd reorientation prevents the material lines from full alignment with the streamlines, which would lead to linear stretching, and this general phenomena is known as chaotic advection. It is relatively straightforward to generate a flow that original ideas of Spencer and Wiley [1]. Instead of can generate chaos; a necessary condition is in trying to understand all details of mixing, by general the crossing of streamlines. For three- using abovementioned tools from chaos theory, dimensional flows, the efficiency of stretching we use the concept of concentration distribution can even be exponential for steady flow. matrices to study the advection of fluid. Once Computational analysis is an important tool such a distribution matrix is constructed it is very in the quantitative estimation of stretching in simple (fast) to study different mixing protocols practical mixers. Most flows are fully three or the influence of initial conditions. dimensional and time-dependent and numerical Although the method will be exemplified methods are required to obtain the velocity field making use of relatively straightforward two- and the resulting stretching. An example is the and three-dimensional time-periodic prototype Kenics static mixer, a spatially-periodic duct flow, flows, see Figure 1, in our laboratory at present studied by Avalosse [5] using a finite element also more practical, industrial, efficient mixers method. Hobbs and Muzzio [6] showed that the like 3D space-periodic static mixing devices, as stretching distributions in the Kenics mixer are e.g. the multiflux mixer, and 3D time- or space self-similar. Another example is the partitioned- periodic dynamic mixing devices, as e.g. the co- pipe mixer [7] consisting of a rotating pipe parti- rotating, closely intermeshing, self-wiping twin tioned with a sequence of orthogonally places screw extruder, are being studied using the same rectangular plates. The system is characterised approach. Results, that allow for fast optimis- by a parameter B, the ratio of cross-sectional ation processes, e.g. concerning screw design, fall twist to axial stretching, and for b = 0 the flow is outside of the scope of this paper and will be pre- regular and becomes chaotic with increasing sented elsewhere. values of b. Meleshko et al. [8] demonstrated, The following Section discusses some using this system, the importance of an accurate results based on the application of ”classical“ velocity field in studying chaotic mixing flows. dynamical methods applied to a three-dimen- Modern tools of chaos theory – Poincaré sec- sional prototype flow. Results will show that it is tions [4], periodic point analysis [9, 10], and possible to analyse this type of flow, but that it stretching distributions [11, 25] – provide a deep is hard to make a quantitative comparison understanding of the mechanisms that make between mixing protocols. In Sections 3 and 4 the chaotic mixing so effective, even though they do same flow is studied using a technique based on not give a direct description of the final mixture. distribution matrices and now actual compari- The goal of this paper is to present an overview sons are more straightforward. Finally, in Section of some recent results where mixing is studied 5 it is shown that microstructure of the mixture by using a more explicit approach based on the can be added to the computations. Applied Rheology 120 May/June 2000 Bilder 14.02.2001 10:20 Uhr Seite 121 2 DISTRIBUTIVE MIXING IN TWO- AND The flow in cavity is described by the Stokes THREE-DIMENSIONAL FLOWS equations: Characteristics of chaotic mixing periodic flows are the determination