UCLA UCLA Previously Published Works Title Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature Permalink https://escholarship.org/uc/item/0st1d3tg Journal Applied Optics, 46(33) ISSN 0003-6935 Authors Kitamura, Rei Pilon, Laurent Jonasz, Miroslaw Publication Date 2007-11-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperatures Rei Kitamura, Laurent Pilon1 Mechanical and Aerospace Engineering Department Henry Samueli School of Engineering and Applied Science University of California, Los Angeles - Los Angeles, CA 90095, USA Phone: +1 (310)-206-5598, Fax: +1 (310)-206-2302
[email protected] Miroslaw Jonasz MJC Optical Technology 217 Cadillac Street Beacons¯eld, QC H9W 2W7, Canada 1 This paper thoroughly and critically reviews studies reporting the real (refractive index) and imaginary (absorption index) parts of the complex refractive index of silica glass over the spectral range from 30 nm to 1,000 ¹m. The general features of the optical constants over the electromagnetic spectrum are relatively consistent throughout the literature. In particular, silica glass is e®ectively opaque for wavelengths shorter than 200 nm and larger than 3.5-4.0 ¹m. Strong absorption bands are observed (i) below 160 nm due to interaction with electrons, absorption by impurities, and the presence of OH groups and point defects, (ii) around 2.73-2.85 ¹m, 3.5 ¹m, and 4.3 ¹m also caused by OH groups, (ii) around 9-9.5 ¹m, 12.5 ¹m, and 21-23 ¹m due to Si-O-Si resonance modes of vibration.