United States Patent Office'

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office' Patented Apr. 7, ‘1942' 2,279,194 ‘ UNITED STATES PATENT OFFICE‘ ' ' v' 2.21am _ ~ ‘ Edmund Field, Wilmington, m1, mum»- to E. '1. du Pont de Nemours & Company, 11,. Del, a corporation of Delaware - No Drawing. Application August 22, 1940, Serial No. 353,674 ' 5 (Cl. 202-42) This inventionrelates to a method for separat Although the proportions of methyl acetate ing substances which either boil closely together ‘ added to the cyclohexane-containing mixture, or form binaries such that separation cannot be and speci?cally the proportions of methyl acetate " achieved by simple fractional distillation. More to the mixture of cyclohexane and acetone, may particularly, this invention relates to the sepa vary over a considerable range, I have found that ration of cyclohexane from benzene and is a modi the greatest e?ciency of operation may be ob ?cation of U. S. Patent 2,212,810, which relates tained by adding the quantity of methyl acetate to the same separation. ‘ ' to a cyciohexane-containing mixture which cor it is an object of this invention to provide a responds approximately with the proportions of ‘method for separating closely-boiling substances 10 methyl acetate and cyclohexane in t_he binary or substances which form azeotropes where sepa which is formed between these two substances. ration by fractional distillation is difficult or im Thus, by the addition of 77.7% by weight of methyl practical. It is a. further object of this invention acetate to a cyclohexane-containing mixture to provide a method for separating cyclohexane there will result a cyclohexane-methyl acetate from benzene. It is an additional object of this 15 binary containing 77.7% by weight methyl acetate invention to increase the e?lciency of separation and 22.3% by weight cyclohexane. When acetone of cyclohexane from benzene by altering the ra is so utilized as a separating medium, such as de tio of acetone to cyclohexane in the distillate, scribed in U. S. Patent 2,212,810,,the quantity of from that of the acetone-cyclohexane azeotrope. methyl acetate necessary for the formation of a - Other objects and advantages of the invention will 20 cyclohexane-acetone-methyl acetate ternary aze be apparent from the following speci?cation. otrope is considerably smaller. Thus, the addi ! have found, as described in U. 8. Patent tion of 18.0% by weight methyl acetate to a cy 2,212,810, that cyclohexane can be removed from clohexane-acetone mixture on distillation gives a mixture containing cyclohexane and substances a product containing 31.9% by weight cyclohex of similar boiling point, such as benzene (B. P. 25 ane, 50.1% acetone and 18.0% methyl acetate. 80.1" C.) (which cannot be distilled ordinarily The distillation occurs at 51.7-53.0. ' ' from cyclohexane, B. P. 80.8’ C.) by adding The general technique described inlU. S. Pat acetone to the mixture and distilling. As de ent 2,212,810 may be followed in the operation of scribed in the ‘patent previously referred to,‘I ' the present invention, the prime diiference ‘be have found that acetone forms a binary azeotrope 30 tween the present invention and that described with cyclohexane (67.3% acetone by weight) in U. S. Patent 2,212,810 being in the use of which boils at a lower temperature (53.1" C.)' methyl acetate in place of or together with the than either acetone or any benzene-'cyclohexane acetone of my prior application. Thus, when mixture and a weight ratio of acetone‘ to cycle treating cyclohexane-benzene mixtures for re hexane of at least 2.0:1.0 is preferable when sep 35 covery of benzene or cyclohexane, or both, each arating thesev substances by distilling under a in the pure form, methyl acetate may be 'added to pressure of one atmosphere. the cyclohexane-benzene mixture to which ace According to the present invention cyclohexane tone has previously been added or to which ace- _ can be removed ‘from a mixture containing cy tone may be simultaneously added and the mix clohexane and substances of a similar boiling 40 ture thereafter distilled. Preferably, at least 2 point by adding methyl acetate to the mixture parts by. weight of methyl acetate are employed and distilling. Methyl acetate and cyclohexane per part of cyclohexane'. ' form a binary containing 77.7% methyl acetate In the preferred operation of this invention, and 22.3% clclohexane, the binary boiling at methyl acetate is utilized together with acetone 553° C. As an added and preferred feature of 45 in the removal of cyclohexane from benzene or the present invention, cyclohexane is removed conversely in the removal of benzene from cy from a mixture containing cyclohexane and sub clohexane because of the smaller quantities of stances of a similar boiling point by adding. methyl acetate necessary when used in conjunc methyl acetate and acetone to the mixture and tion with acetone. distilling. The addition of acetone and ‘methyl 50 The process of this invention preferably in acetate to the cyclohexane-containing mixture volves water-washing of the azeotrope formed permits a more emcient separation than when between methyl acetate‘ and cyclohexane, if acetone alone is utilized in the process such as methyl acetate is utilized alone for cyclohexane described in U. 8. Patent; 2,212,810 which ‘relates removal and the process, is carried out by con to the-separation of cyclohexane from benzene. 55 ducting the binary to the bottom of the ba?le 2 ' r 2,270,194 _' " " - tower down which water is flowing. The com . cyclohexane-acetone-methyl acetate ternary is, tercurrent ?ow of the methyl acetate and water - then separated into ‘its constituents by counter-_ affects solution of the methyl acetate in water currentwater extraction such as previously out;v and release of the cyclohexane which rises to the , lined and the acetone-methyl acetate binary is‘ ' top of the tower and is‘ removed by decantation. ,6 recovered from the water solvent by simple dis The methyl acetate dissolved in the water may tillation; . be recovered for further use by distillation from Following the removal of cyclohexane, the re- ‘ 1 its mixture with water. The cyclohexane may be sidual mixture of acetone, isopropanol, and ben obtained chemically pure by removing the traces zene is tapped to remove acetone and the un of residual water by distillation or by the use 10 converted benzene and isopropanol are returned of common drying agents. - to the hydrogenation unit for reprocessing. ' When the mixture of methyl acetate and ace While I have illustrated my invention by cer tone are utilized according to the preferred em taln applications, I do not limit my claims to ' bodiments of this invention, the same water-wash such speci?c'cases, for there are many possible treatment of the ternary azeotrope formed be-_ 15 problems of separation‘where their solutions may tween methyl acetate, acetone and cyclohexane is ' be employed as a basic principle the recovery of carried out as has been described in connection cyclohexane from mixtures by means of its azeo- _ with the removal of methyl acetate from cyclo trope with methyl acetate or its ternary with hexane by water-washing. The same effect is ob methyl acetate and acetone. ’ served, namely; the cyclohexane rises to the top 20 1 claim: ‘ of the tower and is removed by. decantation, 1. ‘A method for the ‘removal of cyclohexane whereas the methyl acetate and acetone are dis from admixture with benzene which comprises solved in the water and removed by distillation treating a cyclohexane-benzene-containing mix as an- azeotrope which may be recycled or sepa- _ ture wtih methyl acetate and distilling off the re rated for further usein cyclohexane separation. 25 sultant cyclohexane-methyl-acetate-containing ' The process as above described may be applied azeotrope. _ to anymixture of compounds containing cyclo '2. A method for the-removal of cyclohexane -hexane, provided the boiling temperatures of the from admixture with acetone and benzene which additional constituents or any azveotrope mixture comprises treating the cyclohexane-containing between .suchcon'stituents or between such con- 30 mixture with methyl acetate and the stituents and methyl acetate or acetone or both resultant cyclohexane-methyl acetate-ternary are su?iciently remote from the boiling temper azeotrope. atures of the cyclohexane-methyl acetate binary ’ _3. A method for the‘ removal of cyclohexane. or the cyclohexane-methyl acetate-acetone ter from admixture with benzene which‘ comprises nary. In certain cases involving constituents, as treating the .cyclohexane-containing . mixture part of whichare water soluble, water extraction with methyl acetate and distilling off the result ‘may be substituted for distillation. None .Of' - ant cyclohexane-methyl acetate-containing azeo these primary treatments are necessary, however, trope and thereafter removing the cyclohexane in the following illustrative case, the technique by treating the resultant distillate with water. 'of which I have successfully employed in con- 40 4. A method for the removal of cyclohexane junction with a process and ‘the simultaneous from admixture with acetone andbenzene which manufacture of acetone and cyclohexane by ex comprises treating the cyclohexanekoontaining change of hydrogen between isopropanol and mixture with methyl acetate and distilling oi! the benzene as described in copending application of. resultant cyclohexane-methyl acetate-acetone E.,P.~Bartlett, 8. N. 265,932. " I‘ 4, ternary azeotrope andthereafter removing the ~ vis a process of this type involves equilibrium, ‘’ cyclohexane by treating the resultant distillate the product is a mixture of isopropanol, acetone, with water. ' ' benzene and cyclohexane. Such a mixture con 5. A method for the removal of cyclohexane tains constituents for forming at least three dif- ' from admixture‘with benzene which comprises ferent azeotropic mixtures.
Recommended publications
  • The Separation of Three Azeotropes by Extractive Distillation by An-I Yeh A
    The separation of three azeotropes by extractive distillation by An-I Yeh A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by An-I Yeh (1983) Abstract: Several different kinds of extractive distillation agents were investigated to affect the separation of three binary liquid mixtures, isopropyl ether - acetone, methyl acetate - methanol, and isopropyl ether - methyl ethyl ketone. Because of the small size of the extractive distillation column, relative volatilities were assumed constant and the Fenske equation was used to calculate the relative volatilities and the number of minimum theoretical plates. Dimethyl sulfoxide was found to be a good extractive distillation agent. Extractive distillation when employing a proper agent not only negated the azeotropes of the above mixtures, but also improved the efficiency of separation. This process could reverse the relative volatility of isopropyl ether and acetone. This reversion was also found in the system of methyl acetate and methanol when nitrobenzene was the agent. However, normal distillation curves were obtained for the system of isopropyl ether and methyl ethyl ketone undergoing extractive distillation. In the system of methyl acetate and methanol, the relative volatility decreased as the agents' carbon number increased when glycols were used as the agents. In addition, the oxygen number and the locations of hydroxyl groups in the glycols used were believed to affect the values of relative volatility. An appreciable amount of agent must be maintained in the column to affect separation. When dimethyl sulfoxide was an agent for the three systems studied, the relative volatility increased as the addition rate increased.
    [Show full text]
  • SAFETY DATA SHEET Cyclohexane BDH1111
    SAFETY DATA SHEET Cyclohexane BDH1111 Version 1.3 Revision Date 03/25/2015 Print Date 05/08/2015 SECTION 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Cyclohexane MSDS Number : 000000011713 Product Use Description : Solvent Manufactured for : VWR International LLC Radnor Corporate Center Building One Suite 200 100 Matsonford Road Radnor PA 19087 For more information call : (Monday-Friday,8.00am-5:00pm) 1-800-932-5000 In case of emergency call : (24 hours/day, 7 days/week) 1-800-424-9300(USA Only) For Transportation Emergencies: 1-800-424-9300 (CHEMTREC - Domestic) 1-613-996-6666 (CANUTEC - Canada) SECTION 2. HAZARDS IDENTIFICATION Emergency Overview Form : liquid, clear Color : colourless Odor : mild sweet Page 1 / 15 SAFETY DATA SHEET Cyclohexane BDH1111 Version 1.3 Revision Date 03/25/2015 Print Date 05/08/2015 Classification of the substance or mixture Classification of the substance : Flammable liquids, Category 2 or mixture Skin irritation, Category 2 Specific target organ toxicity - single exposure, Category 3, Central nervous system Aspiration hazard, Category 1 GHS Label elements, including precautionary statements Symbol(s) : Signal word : Danger Hazard statements : Highly flammable liquid and vapour. May be fatal if swallowed and enters airways. Causes skin irritation. May cause drowsiness and dizziness. Precautionary statements : Prevention : Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Keep container tightly closed. Ground/bond container and receiving equipment. Use explosion-proof electrical/ ventilating/ lighting/ equipment. Use only non-sparking tools. Take precautionary measures against static discharge. Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. Wash skin thoroughly after handling. Use only outdoors or in a well-ventilated area.
    [Show full text]
  • Safety Data Sheet: Cyclohexane
    Safety data sheet according to Regulation (EC) No. 1907/2006 (REACH), amended by 2015/830/EU Cyclohexane ROTISOLV® ≥99,9 %, UV/IR-Grade article number: CP81 date of compilation: 2018-05-03 Version: 2.0 en Revision: 2020-10-06 Replaces version of: 2018-05-03 Version: (1) SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Cyclohexane ROTISOLV® ≥99,9 %, UV/IR-Grade Article number CP81 Registration number (REACH) 01-2119463273-41-xxxx Index No 601-017-00-1 EC number 203-806-2 CAS number 110-82-7 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: laboratory chemical laboratory and analytical use 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone: +49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data : Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal code/ Telephone Website city National Poisons Inform- Beaumont Road Dublin 9 01 809 2166 https://www.poisons.ie/ ation Centre Beaumont Hospital SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 (CLP) Classification acc. to GHS Section Hazard class Hazard class and cat- Hazard egory state- ment 2.6 flammable liquid (Flam.
    [Show full text]
  • Cyclohexane Oxidation Continues to Be a Challenge Ulf Schuchardt A,∗, Dilson Cardoso B, Ricardo Sercheli C, Ricardo Pereira A, Rosenira S
    Applied Catalysis A: General 211 (2001) 1–17 Review Cyclohexane oxidation continues to be a challenge Ulf Schuchardt a,∗, Dilson Cardoso b, Ricardo Sercheli c, Ricardo Pereira a, Rosenira S. da Cruz d, Mário C. Guerreiro e, Dalmo Mandelli f , Estevam V. Spinacé g, Emerson L. Pires a a Instituto de Qu´ımica, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil b Depto de Eng. Qu´ımica, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil c College of Chemistry, University of California, Berkeley, CA 94720, USA d Depto Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, 45650-000 Ilhéus, BA, Brazil e Universidade Federal de Lavras, Lavras, MG, Brazil f Instituto de Ciências Biológicas e Qu´ımicas, PUC-Campinas, 13020-904 Campinas, SP, Brazil g Sup. Caracterização Qu´ımica, IPEN, 05508-900 São Paulo, SP, Brazil Received 3 October 2000; received in revised form 21 December 2000; accepted 28 December 2000 Abstract Many efforts have been made to develop new catalysts to oxidize cyclohexane under mild conditions. Herein, we review the most interesting systems for this process with different oxidants such as hydrogen peroxide, tert-butyl hydroperoxide and molecular oxygen. Using H2O2, Na-GeX has been shown to be a most stable and active catalyst. Mesoporous TS-1 and Ti-MCM-41 are also stable, but the use of other metals such as Cr, V, Fe and Mo leads to leaching of the metal. Homogeneous systems based on binuclear manganese(IV) complexes have also been shown to be interesting. When t-BuOOH is used, the active systems are those phthalocyanines based on Ru, Co and Cu and polyoxometalates of dinuclear ruthenium and palladium.
    [Show full text]
  • SAFETY DATA SHEET Cyclohexane
    SAFETY DATA SHEET Cyclohexane Section 1. Identification GHS product identifier : Cyclohexane Chemical name : Cyclohexane Synonyms : Benzene hexahydride; Hexahydrobenzene; Hexamethylene; CITGO® Material Code: 07504 Code : 07504 MSDS # : 07504 Supplier's details : CITGO Petroleum Corporation P.O. Box 4689 Houston, TX 77210 [email protected] Emergency telephone : Technical Contact: (832) 486-4000 (M-F - 8 AM to 4 PM CT) number (with hours of Medical Emergency: (832) 486-4700 (24 Hr) operation) CHEMTREC Emergency: (800) 424-9300 (24 Hr) (United States Only) Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE LIQUIDS - Category 2 substance or mixture SKIN IRRITATION - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 ASPIRATION HAZARD - Category 1 AQUATIC HAZARD (ACUTE) - Category 1 AQUATIC HAZARD (LONG-TERM) - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Highly flammable liquid and vapor. Causes skin irritation. May be fatal if swallowed and enters airways. May cause drowsiness or dizziness. Very toxic to aquatic life with long lasting effects. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use explosion- proof electrical, ventilating, lighting and all material-handling equipment. Use only non- sparking tools. Take precautionary measures against static discharge. Keep container tightly closed. Use only outdoors or in a well-ventilated area. Avoid release to the environment. Avoid breathing vapor. Wash hands thoroughly after handling. Response : Collect spillage. IF INHALED: Remove person to fresh air and keep comfortable for breathing.
    [Show full text]
  • BUTADIENE AS a CHEMICAL RAW MATERIAL (September 1998)
    Abstract Process Economics Program Report 35D BUTADIENE AS A CHEMICAL RAW MATERIAL (September 1998) The dominant technology for producing butadiene (BD) is the cracking of naphtha to pro- duce ethylene. BD is obtained as a coproduct. As the growth of ethylene production outpaced the growth of BD demand, an oversupply of BD has been created. This situation provides the incen- tive for developing technologies with BD as the starting material. The objective of this report is to evaluate the economics of BD-based routes and to compare the economics with those of cur- rently commercial technologies. In addition, this report addresses commercial aspects of the butadiene industry such as supply/demand, BD surplus, price projections, pricing history, and BD value in nonchemical applications. We present process economics for two technologies: • Cyclodimerization of BD leading to ethylbenzene (DSM-Chiyoda) • Hydrocyanation of BD leading to caprolactam (BASF). Furthermore, we present updated economics for technologies evaluated earlier by PEP: • Cyclodimerization of BD leading to styrene (Dow) • Carboalkoxylation of BD leading to caprolactam and to adipic acid • Hydrocyanation of BD leading to hexamethylenediamine. We also present a comparison of the DSM-Chiyoda and Dow technologies for producing sty- rene. The Dow technology produces styrene directly and is limited in terms of capacity by the BD available from a world-scale naphtha cracker. The 250 million lb/yr (113,000 t/yr) capacity se- lected for the Dow technology requires the BD output of two world-scale naphtha crackers. The DSM-Chiyoda technology produces ethylbenzene. In our evaluations, we assumed a scheme whereby ethylbenzene from a 266 million lb/yr (121,000 t/yr) DSM-Chiyoda unit is combined with 798 million lb/yr (362,000 t/yr) of ethylbenzene produced by conventional alkylation of benzene with ethylene.
    [Show full text]
  • Opinion on the SCCNFP on Methyl Acetate
    SCCNFP/0694/03, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING METHYL ACETATE adopted by the SCCNFP during the 24th plenary meeting of 24-25 June 2003 SCCNFP/0694/03, final Evaluation and opinion on : methyl acetate _____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The Danish EPA has received a request from a poison information department in a hospital regarding the regulation of methyl acetate in cosmetics. A child had played with a nail polish remover containing 50 w/w % methyl acetate and there was suspicion that it had ingested some of the product. Methyl acetate is very quickly hydrolysed to acetic acid and methanol both whether inhaled or ingested. It is also well known that humans are more sensitive to methanol poisoning than rodents. In order to evaluate the acute toxicity of methyl acetate in humans, it was found rea- sonable to consider the acute toxicity of methanol as reported by clinical cases of poisoning. According to the IPCS report on methanol (Environmental Health Criteria 196, 1997), the lowest lethal dose in humans was considered to be 0.3-1.0 g/kg bw. Assuming a bodyweight of 10 kg for a child, the lowest lethal dose would be 3 g (or 0.09 mol) methanol, arising from the metabolism of 0.09 mol or 6.9 g methyl acetate. At a concentration of 50 w/w % methyl acetate, the lethal dose for humans might be 14 g of nail polish remover. The Danish EPA found it not unlikely that children could risk methanol poisoning if nail polish removers are not properly stored/contained.
    [Show full text]
  • Stability Studies of Selected Polycyclic Aromatic Hydrocarbons in Different Organic Solvents and Identification of Their Transformation Products
    Polish J. of Environ. Stud. Vol. 17, No. 1 (2008), 17-24 Original Research Stability Studies of Selected Polycyclic Aromatic Hydrocarbons in Different Organic Solvents and Identification of Their Transformation Products D. Dąbrowska1, A. Kot-Wasik2, J. Namieśnik*2 1Polish geological institute, Central Chemical laboratory, warsaw, Poland 2Department of Analytical Chemistry, gdansk university of technology, ul. Narutowicza 11/12, 80-892 gdańsk, Poland Received: May 7, 2007 Accepted: October 1, 2007 Abstract one of the problems in an hPlC laboratory is the preservation of samples and extracts prior to analysis without any changes. It has been found that degradation processes cannot be eliminated entirely, but they can be slowed down considerably. Photodegradation kinetics of fluorene, anthracene and benzo(a)pyrene were studied in various organic solvents. Solvents known as good media to store PAhs for a long time were selected with respect to avoid degradation. in the case of fluorene, 9-fluorenone and 9-hydroxyfluorene were detected as main photoproducts. Formation of anthraquinone and 1,8-dihydroxyanthraquinone during the degradation of anthracene was observed. Benzo(a)pyrene-4,5-dihydrodiol and one of the isomers of hydroxy-BaP-dione as products of benzo(a)pyrene photodegradation have been identified. Keywords: polycyclic aromatic hydrocarbons, photodegradation, degradation products, sample stability Introduction 4 or more rings and their metabolites, have a variety of mutagenic and carcinogenic effects on microorganisms, Polycyclic aromatic hydrocarbons (PAhs) are ubiq- plants and animals, and are classified as compounds with uitous contaminants originating from natural and anthro- significant human health risks [6]. pogenic pyrolysis of organic matter such as forest fires, In the environment, primary removal processes of low automobile exhaust, coal and oil refining processes.t heir molecular weight PAhs are microbial degradation and abundance and persistence in several polluted environ- evaporation.
    [Show full text]
  • Safety Data Sheet According to 29CFR1910/1200 and GHS Rev
    Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 12.20.2014 Page 1 of 8 Cyclohexane SECTION 1 : Identification of the substance/mixture and of the supplier Product name : Cyclohexane Manufacturer/Supplier Trade name: Manufacturer/Supplier Article number: S25292A Recommended uses of the product and uses restrictions on use: Manufacturer Details: AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331 Supplier Details: Fisher Science Education 15 Jet View Drive, Rochester, NY 14624 Emergency telephone number: Fisher Science Education Emergency Telephone No.: 800-535-5053 SECTION 2 : Hazards identification Classification of the substance or mixture: Flammable Health hazard Irritant Environmentally Damaging Flam Liq. 2 Skin irrit, cat 2 STOT SE 3 Asp. Tox. 1 Aquatic AcTox. 1 Aquatic ChrTox. 1 Signal word :Danger Hazard statements: Highly flammable liquid and vapour Causes skin irritation May cause drowsiness or dizziness May be fatal if swallowed and enters airways Very toxic to aquatic life with long lasting effects Created by Global Safety Management, Inc. -Tel: 1-813-435-5161 - www.gsmsds.com Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 12.20.2014 Page 2 of 8 Cyclohexane Precautionary statements: If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Keep container tightly closed Wash … thoroughly after handling Avoid release to the environment Do not eat, drink or smoke when using this product Keep away from
    [Show full text]
  • Safety Data Sheet in Compliance with OSHA Hazard Communication Standard (29 CFR 1910.1200)
    Safety Data Sheet In compliance with OSHA Hazard Communication Standard (29 CFR 1910.1200) SECTION 1: IDENTIFICATION SDS Number: S-1651, version 8/9/2018 (a) Product identifier Gans Item ID: S-1651, S-1651D, S-1651G, S-1651P, S-1651Q Gans Description: Gans G2040 Compliant Cleaner (b) Other means of identification General description: Lithographic press cleaning solvent (c) Recommended use Product Use: Industrial use only Restrictions on use: Not for residential use. (d) Supplier’s details Manufacturer: Gans Ink and Supply Co, Inc. Address: 1441 Boyd Street Los Angeles, CA 90033 Contact Person: Marco Ramos Telephone: 323- 264-2200 x139 Email: [email protected] (e) Emergency telephone numbers: Chemical spill or physical hazard: Contact the Local Emergency Response Agency 9-1-1, or the Local Fire Department Ingestion or health hazard: Contact the National Capital Poison Center, Poison Control: 800 222-1222; Poison.org SECTION 2: HAZARD(S) IDENTIFICATION (a) Classification This mixture is hazardous according to OSHA Hazard Communication Standard (29 CFR 1910.1200). Physical hazards: o Flammable Liquid Category 2 Health hazards: o Specific Target Organ Toxicity, Single Exposure (narcotic effect) - Category 3 o Eye Irritation - Category 2A (b) Label elements Signal Word: Danger Page 1 of 7 Hazard Statements: Flammable liquid and vapor; May cause drowsiness or dizziness; Causes serious eye irritation. Precautionary Statements: Prevention: Keep away from sparks, open flames – No smoking; Keep container tightly closed; Ground/bond container and receiving equipment; Use explosion-proof electrical/ventilating/ lighting/equipment; Use only non-sparking tools; Take precautionary measures against static discharge; Wear protective gloves, eye protection.
    [Show full text]
  • Are the Most Well Studied of All Ring Systems. They Have a Limited Number Of, Almost Strain Free, Conformations
    Chem 201/Beauchamp Topic 6, Conformations (cyclohexanes) 1 Cyclohexanes Cyclohexane rings (six atom rings in general) are the most well studied of all ring systems. They have a limited number of, almost strain free, conformations. Because of their well defined conformational shapes, they are frequently used to study effects of orientation or steric effects when studying chemical reactions. Additionally, six atom rings are the most commonly encountered rings in nature. Cyclohexane structures do not choose to be flat. Slight twists at each carbon atom allow cyclohexane rings to assume much more comfortable conformations, which we call chair conformations. (Chairs even sound comfortable.) The chair has an up and down shape all around the ring, sort of like the zig-zag shape seen in straight chains (...time for models!). C C C C C C lounge chair - used to kick back and relax while you study your organic chemistry chair conformation Cyclohexane rings are flexible and easily allow partial rotations (twists) about the C-C single bonds. There is minimal angle strain since each carbon can approximately accommodate the 109o of the tetrahedral shape. Torsional strain energy is minimized in chair conformations since all groups are staggered relative to one another. This is easily seen in a Newman projection perspective. An added new twist to our Newman projections is a side-by-side view of parallel single bonds. If you look carefully at the structure above or use your model, you should be able to see that a parallel relationship exists for all C-C bonds across the ring from one another.
    [Show full text]
  • Material Safety Data Sheet Cyclohexane MSDS
    He a lt h 1 3 Fir e 3 1 0 Re a c t iv it y 0 P e r s o n a l P r o t e c t io n H Material Safety Data Sheet Cyclohexane MSDS Section 1: Chemical Product and Company Identification Product Name: Cyclohexane Contact Information: Catalog Codes: SLC3520, SLC2305 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 110-82-7 Houston, Texas 77396 RTECS: GU6300000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Cyclohexane Order Online: ScienceLab.com CI#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: Synonym: Benzene, hexahydro-; Hexahydrobenzene; 1-800-424-9300 Hexamethylene; Hexanaphthene International CHEMTREC, call: 1-703-527-3887 Chemical Name: Cyclohexane For non-emergency assistance, call: 1-281-441-4400 Chemical Formula: C6-H12 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Cyclohexane 110-82-7 100 Toxicological Data on Ingredients: Cyclohexane: ORAL (LD50): Acute: 12705 mg/kg [Rat]. 813 mg/kg [Mouse]. DERMAL (LD): Acute: >18000 mg/kg [Rabbit]. Section 3: Hazards Identification Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant, permeator), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health Effects: CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to kidneys, liver, cardiovascular system, central nervous system (CNS). Repeated or prolonged exposure to the substance can produce target organs damage. Section 4: First Aid Measures Eye Contact: p. 1 Check for and remove any contact lenses.
    [Show full text]