Electrical Conductivity Structure of the Lithosphere in Western Fennoscandia from Three-Dimensional Magnetotelluric Data

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Conductivity Structure of the Lithosphere in Western Fennoscandia from Three-Dimensional Magnetotelluric Data A 647 OULU 2014 A 647 UNIVERSITY OF OULU P.O.BR[ 00 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA SERIES EDITORS SCIENTIAESCIENTIAEA A RERUMRERUM Maria Cherevatova NATURALIUMNATURALIUM ASCIENTIAE RERUM NATURALIUM Maria Cherevatova Professor Esa Hohtola ELECTRICAL CONDUCTIVITY BHUMANIORA STRUCTURE OF University Lecturer Santeri Palviainen CTECHNICA THE LITHOSPHERE IN Postdoctoral research fellow Sanna Taskila WESTERN FENNOSCANDIA DMEDICA Professor Olli Vuolteenaho FROM THREE-DIMENSIONAL ESCIENTIAE RERUM SOCIALIUM MAGNETOTELLURIC DATA University Lecturer Veli-Matti Ulvinen FSCRIPTA ACADEMICA Director Sinikka Eskelinen GOECONOMICA Professor Jari Juga EDITOR IN CHIEF Professor Olli Vuolteenaho PUBLICATIONS EDITOR Publications Editor Kirsti Nurkkala UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, OULU MINING SCHOOL ISBN 978-952-62-0709-4 (Paperback) ISBN 978-952-62-0710-0 (PDF) ISSN 0355-3191 (Print) ISSN 1796-220X (Online) ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 647 MARIA CHEREVATOVA ELECTRICAL CONDUCTIVITY STRUCTURE OF THE LITHOSPHERE IN WESTERN FENNOSCANDIA FROM THREE-DIMENSIONAL MAGNETOTELLURIC DATA Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defence in Kuusamonsali (YB210), Linnanmaa, on 12 December 2014, at 12 noon UNIVERSITY OF OULU, OULU 2014 Copyright © 2014 Acta Univ. Oul. A 647, 2014 Supervised by Doctor Maxim Smirnov Doctor Toivo Korja Professor Pertti Kaikkonen Reviewed by Doctor Heinrich Brasse Doctor Josef Pek Opponent Professor Thorkild Rasmussen ISBN 978-952-62-0709-4 (Paperback) ISBN 978-952-62-0710-0 (PDF) ISSN 0355-3191 (Printed) ISSN 1796-220X (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2014 Cherevatova, Maria, Electrical conductivity structure of the lithosphere in western Fennoscandia from three-dimensional magnetotelluric data. University of Oulu Graduate School; University of Oulu, Oulu Mining School Acta Univ. Oul. A 647, 2014 University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland Abstract The lithospheric conductivity in the westernmost Fennoscandia has been studied using magnetotelluric (MT) data. The western margin of Fennoscandia was significantly affected in Paleozoic by the Caledonian orogeny and later by the rifting of Laurentia and the opening of the Atlantic Ocean c. 80 Ma ago. Magnetotelluric studies have been carried out in two target areas in southern Norway and in western Fennoscandia. The first study resulted in 2-D geoelectric models of two profiles stretching from Oslo to the Norwegian coast. The interpretation suggests that the basement is in general very resistive with a few conductive upper crustal layers, representing the alum shales, and middle crustal conductors possibly imaging the remnants of the closed ocean basins. A more extensive MT study was performed within the project "Magnetotellurics in the Scandes". Measurements were carried in summers of 2011 to 2013, resulting in an array of 279 MT sites. The data allowed us to derive 2-D geoelectric models for the crust and upper mantle as well as 3-D models for the crust. The inversions revealed a resistive upper crust and a conductive lower crust, two upper crustal conductors in the Skellefteå and Kittilä districts, highly conducting alum shales in the Caledonides and a conductive upper crust beneath the Lofoten peninsula. The thickness of the lithosphere is around 200 km in the north and 300 km in the south-west. The Palaeoproterozoic lithosphere is the thickest, not the Archaean, on contrary to a generally accepted hypothesis. A better image of the lithosphere will help to evaluate the proposed mechanisms of the exhumation of the Scandinavian Mountains. The theoretical part of this study is the development of a new multi-resolution approach to 3- D electromagnetic (EM) modelling. Three-dimensional modelling of MT data requires enormous computational resources because of the huge number of data and model parameters. The development of the multi-resolution forward solver is based on the fact that a finer grid resolution is often required near the surface. On the other hand, the EM fields propagate in a diffusive manner and can be sufficiently well described on a grid that becomes coarser with depth. Tests showed that the total run time can be reduced by five times and the memory requirements by three times compared with the standard staggered grid forward solver. Keywords: Caledonides, electomagnetic forward modelling and inversion, electrical conductivity, Fennoscandia, lithosphere-asthenosphere boundary, magnetotellurics Cherevatova, Maria, Maankamaran sähkönjohtavuus Fennoskandian länsiosassa magnetotelluuristen tutkimusten valossa. Oulun yliopiston tutkijakoulu; Oulun yliopisto, Kaivannaisalan tiedekunta Acta Univ. Oul. A 647, 2014 Oulun yliopisto, PL 8000, 90014 Oulun yliopisto Tiivistelmä Olemme tutkineet litosfäärin sähkönjohtavuutta Fennoskandian länsiosassa magnetotelluurisen (MT) menetelmän avulla. Fennoskandian länsireuna muokkautui merkittävästi paleotsooisena aikana Kaledonidien vuorijonopoimutuksessa sekä myöhemmin mesotsooisena aikana Lauren- tia-mantereen repeytyessä ja Atlantin valtameren syntyessä noin 80 miljoonaa vuotta sitten. MT- tutkimukset tehtiin Etelä-Norjassa ja Fennoskandian luoteisosassa. Ensimmäisessä tutkimukses- sa kallioperän sähkönjohtavuutta kuvattiin kaksiulotteisilla (2-D) johtavuusmalleilla, jotka ulot- tuvat Oslosta Norjan rannikolle. Mallien tulkinta viittaa siihen, että maan kuori on pääosin hyvin eristävä lukuun ottamatta muutamaa kuoren ylä- ja keskiosassa olevaa johdekerrosta. Yläkuoren johteet edustavat alunaliuskeita ja keskikuoren johteet todennäköisesti suljetuissa merialtaissa syntyneitä hiilipitoisia sedimenttikerrostumia. Laajempi MT-tutkimus tehtiin ”Magnetotellurics in the Scandes” -hankkeessa. Mittauksia tehtiin 279 mittauspisteessä kesinä 2011–2013. Saadun aineiston avulla voitiin laatia 2-D inversiomallit kuoresta ja ylävaipasta sekä 3-D inversiomalli kuoresta. Tulosten mukaan täällä kuoren yläosa on eristävä kun taas kuoren alaosa on sähköä hyvin johtava. Edellisen lisäksi malleissa näkyy yläkuoren johtavat muodostumat Skellefteån ja Kittilän alueilla, korkean johtavuuden alunaliuskeet Kaledonidien alueella sekä johde Lofoot- tien alla. Litosfäärin paksuus on noin 200 km mittausverkon pohjoisosassa ja noin 300 km lou- naassa. Tämän mukaan litosfääri on paksuin varhaisproterotsooisen litosfäärin alueella, ei arkeeisen litosfäärin alueella vastoin yleistä hypoteesia. Tutkimuksen teoreettisessa osassa kehitettiin sähkömagneettiseen mallinnukseen uusi moni- tasoiseen diskretisointiin perustuva menetelmä. MT-aineiston 3-D käänteisongelman ratkaisu ja siihen liittyvä suora mallintaminen vaativat suuren laskennallisen kapasiteetin, koska havainto- jen ja mallin kuvaamiseen tarvittavien parametrien määrä on erittäin suuri. Moniresoluutio-algo- ritmi perustuu siihen, että mallin hienojakoisempaa diskretisointia tarvitaan yleensä lähellä maan pintaa kun taas syvemmälle edettäessä, sähkömagneettisen aallon diffuusin etenemisen vuoksi, malli voi olla karkeampi. Tietokonesimulaatioiden mukaan suoritusaika on viidennes ja muisti- tarve kolmannes verrattuna tavanomaiseen suoran laskennan ”staggered grid” -diskretisointiin. Asiasanat: Fennoskandia, Kaledonidit, litosfääri-astenosfääri -raja, magnetotelluriikka, sähkömagneettinen mallinnus ja inversio, sähkönjohtavuus To my parents, Alvina and Igor 8 Acknowledgements I would like to express my greatest gratitude to the people who have helped and sup- ported me throughout my dissertation. I am grateful to my main supervisor Dr. Maxim Smirnov for his extraordinary support in this thesis process. He has always been patient in countless discussions, which helped me to better understand the magnetotelluric method and moved me up to a new level. He shared with me his huge experience in managing and carrying out magnetotelluric field campaigns providing me an opportunity to enjoy the field works in Norway and Sweden. He guided and supported me in my theoretical exercises and codes development, teaching me to be details oriented. I would like to express my deep regards to my supervisor Dr. Toivo Korja for guiding me in geological interpretation of my models. He has always been open minded providing many interesting discussions about various social aspects. This PhD research would have been impossible without my first supervisor from Saint-Petersburg, Dr. Stanislav Vagin. I would like to thank him for attracting my interest to geophysics. I would like to thank Prof. Pertti Kaikkonen for his support with various administrative issues. All other colleagues and PhD students in our department for thorough discussions during seminars and in person. I would like to thank the Academy of Finland and the University of Oulu Graduate School for opportunity to study at University of Oulu and participate in national and international conferences where I met many famous scientists. Owing to Dr. Smirnov and financial supports from the Academy of Finland I was able to visit Prof. Gary Egbert at Oregon State University (Corvallis, Oregon, USA) for several times. I greatly acknowledge his lessons on 3-D modelling and inversion, which sometimes were smoothly moved to “Block 15”. I would like to thank him for amazing excursion in San Francisco. I would also like to thank Dr. Anna Kelbert for many useful discussions during
Recommended publications
  • Evolution of Mafic Rock-Types of the Kolvitsa Complex
    Evolution of mafic rock-types of the Kolvitsa Complex, Kola Peninsula (Russia): Implications for the metamorphic evolution of the Kolvitsa Belt and characterisation of related fluid-rock interactions Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematischen-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Nicol Susann Ecke Bonn 2004 TABLE OF CONTENTS DANKSAGUNG GENERAL INTRODUCTION 1 1. Reaction textures in mafic rock-types: Implication for the metamorphic evolution of the Kolvitsa Belt, Kola Peninsula (Russia) 1.1. Introduction 3 1.2. Lapland-Kola Orogen 4 1.3. Geological setting of the Kolvitsa Belt 5 1.4. Petrography, microstructures and mineral reactions 8 1.4.1. Granulite-facies assemblages from the south-eastern 8 boundary of the Kolvitsa Massif 1.4.2. Corona reactions involving garnet 10 1.4.2.1. Garnet-consuming reaction textures from the south-eastern 10 boundary of the Kolvitsa Massif 1.4.2.2. Garnet-producing corona textures from the central part 12 of the Kolvitsa Massif 1.4.3. Amphibolite-facies assemblages 14 1.5. Mineral chemistry 17 1.5.1. Garnet 17 1.5.2. Clinopyroxene 20 1.5.3. Orthopyroxene 24 1.5.4. Plagioclase 27 1.5.5. Amphibole 31 1.5.6. Fe-Ti-oxides & minerals 33 1.6. Temperature and pressure estimates 35 1.6.1. Granulite-facies stage for the mylonitic rock types from the 35 south-eastern boundary of the Kolvitsa Massif 1.6.2. Decompressional stage in mafic rock types from the 45 south-eastern boundary of the Kolvitsa Massif 1.6.3.
    [Show full text]
  • 3. Fennoscandian Shield and Cover Rocks
    Geo log ical Survey of Finland. Spec ial Paper 28 Thomas t smdqvist and Sill; Autio (eds. ), Reiduiv Boe et al. the west. Rock-forming events during three major the rifted and tecto nically shortened margin ofBaltica. orogenies and tectonically more quiet (anorogenic) Units accreted to Baltica, emanating from exo tic and evolutionary intervals have contributed to the pres­ outboard terranes,e.g . from Laurentia, havealso been ently exposed bedrock. Two of these orogenies oc­ iden tified in the higher Ca ledonian structural units. curred in Precambri an time: the Lopian orogeny of Sedimentary, inter montanedeposits of Devonian a nd Archaean age (c. 2.9-2.6 Ga), co ntaining remn ants of Late Silurian age , which have been affected by Ca l­ still older ('Saa mian', up to c. 3.1 Ga) rocks, and the edonian deformation, also occur in the Ca ledo nides. Svecokarelian (or Svecofennian) orogeny of Palaeo­ The westernmost parts of the Mid -Norden bed rock, proterozoic age (c. 1.9-1.8 Ga). The third and young­ in the shelf area ofthe Norwegian Sea, are do minated est orogeny is the Caledonian, the major tectonic by sedimentary cover sequences of Mesozoic and events of which fall in the Silurian and Devonian. Cenozo ic age . Older sedimentary cover rocks, of The eastern and ce ntral parts of the bedrock of the Mesoproterozoic to Ca mbrian age, occuron top of the Mid-Norden area belong to the Fennoscandian (or Pro terozoic and Archaean co mplexe s in the Gulf of Baltic) Shield. The west-central parts, mai nly in the Bothnia and adjo ining land areas.
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Geochemical study and identification of a felsic porphyritic unit, Sjöliden, Gold Line, Northern Sweden Vincent Combes Master of Science (120 credits) Exploration and Environmental Geosciences Luleå University of Technology Department of Civil, Environmental and Natural resources engineering Abstract The present work identifies and classifies a felsic meta igneous rock mapped at Sjöliden in Västerbotten, northern Sweden. The studied area is located five kilometers North East of the Svartliden gold mine. Situated within the Gold Line, the Sjöliden area is highly interesting from an economic point of view. This thesis has three main objectives, first to find out whether the porphyritic felsic unit has an intrusive or an extrusive origin, and secondly to give a geochemical classification to this rock. Also, a facies analysis of the metasedimentary lithologies is done. Geochemical data, thin sections, core logging and mapping were used for this work. The metasedimentary unit is a turbiditic sequence classified as continental island arc metagreywacke showing primary bedding with a great variation of graphite and sulphide content, grain size and color. It is a deep sea sediment. The felsic porphyritic unit is a meta- trachyte. It presents euhedral to subhedral sanidine phenocrysts, a fine grain groundmass with quartz veining, pyrrhotite, arsenopyrite and gold. Using immobile element and considering the fact that immobile elements show an alteration trend, the geochemical study classifies the felsic porphyritic unit as a trachyte. One of the main characteristic of the rock is its high value of sodium. This can be explained by a high concentration in the protolith, a sodic alteration (Na enrichment and K depletion) and by the deposition in deep ocean (Na rich environment).
    [Show full text]
  • Chemistry and Fabric of Olivine Microstructures in Cold, Ultra-Depleted Spinel Mantle Wedge Peridotite, Seve Nappe Complex (Central Swedish Caledonides)
    CHEMISTRY AND FABRIC OF OLIVINE MICROSTRUCTURES IN COLD, ULTRA-DEPLETED SPINEL MANTLE WEDGE PERIDOTITE, SEVE NAPPE COMPLEX (CENTRAL SWEDISH CALEDONIDES) MSc student : Frediano Clos [email protected] Supervisor: Dr. Herman L.M. van Roermund ABSTRACT This thesis investigates the formation conditions of olivine microstructures in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks in the Seve Nappe Complex (SNC) of Northern Jämtland, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunites (high olivine Mg# (Mg/Mg+Fe = 0,92–0,93) and spinel Cr# (Cr/Cr+Al = 0,89-0,96)), and harzburgites (with lower Mg# (0,91–0,92) and higher whole-rock Ca and Al contents). Dunites are characterized by three contrasting olivine microstructures formed in response to different tectono- metamorphic conditions: 1) Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm are surrounded by 2) dynamically recrystallized olivine grains (M2) defining a characteristic olivine “foam” microstructure (200-2000 um). In strongly localized shear zones 3) an olivine “mortar” structure (10-50 um). Olivine fabric analysis (microstructure + Crystallographic Preferred Orientations (CPO)), EMP and XRF analyses reveal a retrograde evolution for the KSP. Olivine porphyroclasts (M1) grew at high temperature during cooling following Archean melt extraction (<50%) and possible Proterozoic refertilization events. The onset of the Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 750-830°C – 2±1 Gpa by dislocation creep processes producing dominant E-type CPO’s by the operation of the [100](001) slip systems.
    [Show full text]
  • Footwall Basal Thrust, Sakatti Cu-Ni-PGE Deposit, Northern Finland
    Footwall basal thrust, Sakatti Cu-Ni-PGE deposit, Northern Finland Matti Vuorisalo University of Turku Department of Geography and Geology Bedrock geology June 2021 The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. University of Turku Department of Geography and Geology, Geology section Vuorisalo, Matti: Footwall basal thrust, Sakatti Cu-Ni-PGE deposit, Northern Finland MSc thesis, 78 p + 6 appendices pp. Geology and mineralogy June 2021 The Sakatti Cu-Ni-PGE deposit, located ~20 km northeast from the municipality of Sodankylä, has been formerly investigated mainly for its economic potential, while the structural character of the deposit has been left in the background. An example of this is the minor amount of oriented drill cores that would have penetrated and reached the essential geological structures. The present study focuses on the footwall basal thrust, a major geological structure in the deposit. The first main objective of this study was the kinematic interpretation of the thrust, which was investigated based on the observed geological structures and deformation trends in the rocks above and below the thrust. Data about the deformation and kinematics related to the thrust were gathered by analyzing dipmeter-data, drill core and thin section observations and by conducting a study that focused on stratigraphic separations and unit continuations. According to new observations and interpretations the rock units were displaced towards SW during progressive D1-D2 phases, which consisted of overthrusting and subsequent overturned folding. The overthrusting took place along SW-vergent thrust faults, to which the footwall basal thrust probably belonged.
    [Show full text]
  • The Metamorphic Evolution of the Kolvitsa Complex and The
    Evolution of mafic rock-types of the Kolvitsa Complex, Kola Peninsula (Russia): Implications for the metamorphic evolution of the Kolvitsa Belt and characterisation of related fluid-rock interactions Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematischen-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Nicol Susann Ecke Bonn 2004 TABLE OF CONTENTS DANKSAGUNG GENERAL INTRODUCTION 1 1. Reaction textures in mafic rock-types: Implication for the metamorphic evolution of the Kolvitsa Belt, Kola Peninsula (Russia) 1.1. Introduction 3 1.2. Lapland-Kola Orogen 4 1.3. Geological setting of the Kolvitsa Belt 5 1.4. Petrography, microstructures and mineral reactions 8 1.4.1. Granulite-facies assemblages from the south-eastern 8 boundary of the Kolvitsa Massif 1.4.2. Corona reactions involving garnet 10 1.4.2.1. Garnet-consuming reaction textures from the south-eastern 10 boundary of the Kolvitsa Massif 1.4.2.2. Garnet-producing corona textures from the central part 12 of the Kolvitsa Massif 1.4.3. Amphibolite-facies assemblages 14 1.5. Mineral chemistry 17 1.5.1. Garnet 17 1.5.2. Clinopyroxene 20 1.5.3. Orthopyroxene 24 1.5.4. Plagioclase 27 1.5.5. Amphibole 31 1.5.6. Fe-Ti-oxides & minerals 33 1.6. Temperature and pressure estimates 35 1.6.1. Granulite-facies stage for the mylonitic rock types from the 35 south-eastern boundary of the Kolvitsa Massif 1.6.2. Decompressional stage in mafic rock types from the 45 south-eastern boundary of the Kolvitsa Massif 1.6.3.
    [Show full text]
  • Continental Growth by Accretion: a Tectonostratigraphic Terrane
    Continental growth by accretion: A tectonostratigraphic terrane analysis of the evolution of the western and central Baltic Shield, 2.50 to 1.75 Ga ADRIAN F. PARK Department of Geology, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3 ABSTRACT relationship "allochthonous," however, no a priori assumption is made as to whether terranes are "exotic" or "suspect"; all that is acknowledged is Tectonostratigraphic terrane analysis of the western and central the tectonic nature of their boundaries. Baltic Shield defines a framework for continental growth through the Within terranes, the recognition of the products of plate-tectonic period 2.50-1.75 Ga. Eight discrete terranes can be defined in this part processes permits the original tectonic settings to be elucidated. The advent of the Svecokarelian orogen: the older cratonic Kuhmo and lisalmi of high-resolution geochronology permits the construction of realistic time terranes, the hybrid Lapland and Savo province allochthonous ter- scales. Accretion and stitching in an evolving collage produces hybrid ranes, the juvenile island-arc-like Skeilefte-Savonlinna and south Fin- terranes. It therefore follows that in defining a terrane, both spatial and land-central Sweden terranes, the back-arc or arc-like Outokumpu temporal factors must be considered. The identification and precise dating nappe, and the ophiolitic (oceanic?) Jormua nappe. Stitching events of stitching events permits the construction of an accretion history of can also be recognized. These include the ca. 1.88-1.87 Ga Svionian progressive terrane interaction. magmatic arc, the ca. 2.44 Ga Koillismaa intrusions, the Kalevian Tectonostratigraphic terrane analysis of Phanerozoic mobile belts flysch basin, and the Bothnian basin.
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Geochemical and kinematic study of shear zones within the "gold line", Lycksele- Storuman province, northern Sweden Per Samskog Master of Science Exploration and Environmental Geosciences Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Geochemical and kinematic study of shear zones within the “gold line”, Lycksele-Storuman province, northern Sweden. Per Samskog Division of applied geochemistry and geoscience, Luleå University of Technology 2011 Abstract A kinematic and geochemical study was carried out in shear zones within the “gold line” in the Lycksele-Storuman province, northern Sweden, with the aid of, field mapping, thin sections and whole rock geochemical data. The shear zones were hosted by metabasalt, metasediments, felsic metavolcanics and metagranodiorite. The area has undergone major deformation during the Svecofennian orogeny and the shear zones in this study are interpreted as being formed during this event. The geochemical study was carried out in three localities, the Grundfors road-cut, Sjöliden and the Svartliden gold mine. The data from Grundfors and Sjöliden indicates two different magmatic arc sources, volcanic-arc affinity for Sjöliden and MORB or Island-arc affinity for Grundfors. The bedrock at Grundfors displayed silicified zones but the protolith for these was not possible to determine. Sjöliden showed no major elemental exchange between the samples. Svartliden showed two different sources for the metasediments present, acid-arc source and an oceanic island-arc source. The metasediments formed from an acid-arc source displayed a clear relationship based on immobile elements to the highly silicified rocks at Svartliden. This study used one of the acid-arc source metasediments as a precursor with a resulting mass gain of 1800%.
    [Show full text]
  • Paleoproterozoic Evolution of Fennoscandia and Greenland
    20 by Raimo Lahtinen1, Adam A. Garde2, and Victor A. Melezhik3 Paleoproterozoic evolution of Fennoscandia and Greenland 1 Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland. E-mail: raimo.lahtinen@gtk.fi 2 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. 3 Geological Survey of Norway, N-7491 Trondheim, Norway; University of Bergen, N-5007 Bergen, Norway. The Paleoproterozoic evolution of Fennoscandia and Greenland can be divided into major rifting and orogenic stages. The Paleoproterozoic rifting of Fennoscandia started with 2.505–2.1 Ga, multi- phase, southwest-prograding, intraplate rifting. Both Fennoscandia and Greenland experienced 2.1– 2.04 Ga drifting and separation of their Archean cratons by newly-formed oceans. The main Paleopro- terozoic orogenic evolution of Fennoscandia resulted in the Lapland-Kola orogen (1.94–1.86 Ga) and the composite Svecofennian orogen (1.92–1.79 Ga). The Paleoproterozoic orogens in Greenland, from north to south, are the Inglefield mobile belt (1.95–1.92 Ga), the Rinkian fold belt/Nagssugtoqidian orogen (1.88–1.83 Ga) and the Ketilidian orogen (c. 1.8 Ga). The Lapland-Kola orogen, Inglefield mobile belt and the Rinkian fold belt/Nagssugtoqidian orogen are continent-continent collision zones with limited formation of new Paleoproterozoic crust, whereas the Ketilidian orogen displays a convergent plate-tectonic system, without subsequent collision. The composite Svecofennian orogen is responsible for the main Paleoproterozoic crustal growth of Fennoscandia. Introduction Fennoscandia is a geographical term used to describe the Scandi- navian Peninsula, the Kola Peninsula, Russian Karelia, Finland and Denmark.
    [Show full text]
  • Progress Report on the Geology, Mineralization and Exploration Activities on the Rompas-Rajapalot Gold- Uranium Project, Peräpohja Schist Belt Lapland, Finland
    Mawson Resources Ltd Progress Report On The Geology, Mineralization And Exploration Activities On The Rompas-Rajapalot Gold- Uranium Project, Peräpohja Schist Belt Lapland, Finland Michael Hudson, FAusIMM, MAIG, MSEG 8/26/2013 1 Table of Contents Table of Contents ............................................................................................................................ 2 List of Tables .................................................................................................................................. 4 List of Appendices .......................................................................................................................... 4 1. Summary ................................................................................................................................ 5 2. Introduction ........................................................................................................................... 8 3. Reliance on Other Experts .................................................................................................... 8 4. Property Description and Location...................................................................................... 8 5. Accessibility, Climate, Local Resources, Infrastructure and Physiography .................. 13 6. History .................................................................................................................................. 13 7. Geological Setting and Mineralization .............................................................................
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS The Ersmarksberget Gold Mineralisation Its Mineralogy, Petrography, Setting of Gold and Metallurgical Implications Obasi Martin Essuka Master of Science (120 credits) Exploration and Environmental Geosciences Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Master’s Thesis The Ersmarksberget Gold Mineralisation; Its Mineralogy, Petrography, Setting of Gold and Metallurgical Implications. Obasi Martin Essuka Supervisor: Prof. Pär Weihed “If I have seen further it is by standing on the shoulders of giants.” (Isaac Newton, letter to Robert Hooke, February 5, 1675) Abstract The Ersmarksberget gold mineralisation occurs in north-south striking, discontinuous quartz veins in the contact between a tonalitic intrusion (Juktan dome) and metagreywackes in the northern part of the Bothnian Basin, northern Sweden. The mineralisation is localised within sulphide and organic matter rich metasedimentary rocks. Metallurgical test work on the mineralisation produced low gold recoveries. Comprehensive ore mineralogy is essential for the gold recovery process. Forty polished thin sections were analysed using optical ore microscopy, scanning electron microscopy and the electron microprobe microanalyser. These analyses revealed that gold occurs as electrum with an Au:Ag ratio of approximately 5:1. The electrum occurs as free grains within quartz grain boundaries, intergrown with arsenopyrite crystals, filling in micro fractures and voids in the silicate matrix and arsenopyrite crystals, and clustered around the arsenopyrite-quartz grain boundaries. Arsenopyrite is the only sulphide associated with detectable electrum. The electrum has varying particle sizes ranging from less than 10 microns to more than 100 microns. A good fraction of the electrum is also submicroscopic. The gangue minerals include arsenopyrite, pyrite, chalcopyrite, galena, calcite, graphite and quartz.
    [Show full text]
  • Rompas 43-101
    Report on the Geology, Mineralization and Exploration Potential of the Rompas & Rumavuoma Gold-Uranium Property Southern Lapland, Finland Prepared for Mawson Resources Ltd. by John Nebocat, P.Eng June 11, 2010 PGS Pacific Geological Services Table of Contents Summary .............................................................. 1 1.0 Introduction ............................................................ 2 2.0 Property Description and Location .......................................... 2 3.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography ........... 5 4.0 History ................................................................ 6 5.0 Geological Setting ....................................................... 6 6.0 Deposit Types ......................................................... 16 7.0 Mineralization ......................................................... 16 8.0 Exploration ............................................................ 18 9.0 Drilling ............................................................... 25 10.0 Sampling Method and Approach ........................................... 25 11.0 Sample Preparation, Analyses and Security .................................. 25 12.0 Data Verification ....................................................... 29 13.0 Adjacent Properties ..................................................... 30 14.0 Mineral Processing and Metallurgical Testing ................................ 32 15.0 Mineral Resource and Mineral Reserve Estimates ............................
    [Show full text]