ISSN 2570-4745 VOL 3 / ISSUE 5 / NOVEMBER 2018 Draconids Outburst As Observed from Hum,Croatia.Credit:Aleksandar Merlak Zeta

Total Page:16

File Type:pdf, Size:1020Kb

ISSN 2570-4745 VOL 3 / ISSUE 5 / NOVEMBER 2018 Draconids Outburst As Observed from Hum,Croatia.Credit:Aleksandar Merlak Zeta e-Zine for meteor observers meteornews.net ISSN 2570-4745 VOL 3 / ISSUE 5 / NOVEMBER 2018 Draconids outburst as observed from Hum, Croatia. Credit: Aleksandar Merlak Zeta Cassiopeiids case study 2018 Draconids outburst 2017 Report BOAM Radio observations Perseids 2018 10 October Benelux Fireball 2018 – 5 eMeteorNews Contents Zeta Cassiopeiids (ZCS-444) Paul Roggemans and Peter Cambell-Burns ............................................................................................ 225 December 2015 Geminids adventure Pierre Martin........................................................................................................................................... 233 Visual observations 2016 Pierre Martin........................................................................................................................................... 239 Visual observations 2017 Pierre Martin........................................................................................................................................... 245 2017 Report BOAM, October to December 2017 Tioga Gulon ............................................................................................................................................ 252 2018 Perseid expedition to Crete Kai Gaarder ............................................................................................................................................ 263 August 2018 visual observations Pierre Martin........................................................................................................................................... 267 Perseids 2018 report from northern Italy Enrico Stomeo ......................................................................................................................................... 275 Perseids observed using low-cost Raspberry Pi based meteor stations Denis Vida, Aleksandar Merlak and Damir Šegon ................................................................................. 276 Preview: Perseid observations from Aubenas Les Alps, Southern France Koen Miskotte .......................................................................................................................................... 277 Autumn 2018 observations Pierre Martin........................................................................................................................................... 280 Meteor detection by infrasound method Jonas Schenker ........................................................................................................................................ 284 First impressions of the 2018 Draconids outburst Paul Roggemans ...................................................................................................................................... 293 Draconid outburst observed October 8th 2018 by CAMS BeNeLux Carl Johannink ........................................................................................................................................ 296 2018 Draconids as seen by a low-cost RPI based meteor camera Denis Vida, Aleksandar Merlak and Damir Šegon ................................................................................. 298 Fireball over BeNeLux 10 October 2018, 21h14m11s UT Carl Johannink and Paul Roggemans ..................................................................................................... 300 Fireball over Northern Europe, 10 October 2018, 21h14m11s UT François Colas ........................................................................................................................................ 304 Radio meteors – July 2018 Felix Verbelen ......................................................................................................................................... 308 Radio meteors – August 2018 Felix Verbelen ......................................................................................................................................... 312 eMeteorNews 2018 – 5 Radio meteors – September 2018 Felix Verbelen ......................................................................................................................................... 316 Radio meteors – October 2018 Felix Verbelen ......................................................................................................................................... 321 CAMS-Florida report, 19-20 October 2018 J. Andreas (Andy) Howell ....................................................................................................................... 326 2018 – 5 eMeteorNews © eMeteorNews eMeteorNews 2018 – 5 Zeta Cassiopeiids (ZCS-444) Paul Roggemans1 and Peter Cambell-Burns2 1 Pijnboomstraat 25, 2800 Mechelen, Belgium [email protected] 2 UKMON, Cavendish Gardens, Fleet, Hampshire, United Kingdom [email protected] A case study on the Zeta Cassiopeiids proves that this shower qualifies all criteria to be recognized as an established shower. Yearly activity has been detected with an indication for some long-term periodicity. The time of maximum activity could be established at solar longitude 112.75° with a secondary maximum at solar longitude 114.5°. All shower characteristics are identical to the nearby Perseid shower although ζ-Cassiopeiids are likely older. Both showers may be related to a common origin. 1 Introduction and Hawkins discrimination criteria DSH < 0.15 and allowed the computation of an accurate reference orbit, The global CAMS network results of 15 July 2018 radiant drift as well as other shower characteristics. displayed a remarkable concentration of radiants identified as Zeta Cassiopeiids (ZCS-444). The position and velocity At about the same time when the CMN-team revealed the can be easily mistaken for early Perseids, but real early presence of the ζ-Cassiopeiids from its orbit catalogue, the Perseids have a slightly higher velocity and radiants south Polish Comets and Meteors Workshop published a paper of these Zeta Cassiopeiids (ZCS-444), see Figure 1. with their data on this new shower (Żołądek and Wiśniewski, 2012). On July 14–15, 2005 Polish visual The remarkable large number of these Zeta Cassiopeiid observers had noticed a large number of bight meteors radiants inspired the authors to make a case study on this radiating from a position slightly west of the expected early shower which is still not listed as an established meteor Perseid radiant, close to the star ζ-Cassiopeiae. A shower in the IAU working list of meteor showers. remarkably high number of meteors were captured on the Polish video cameras, including a spectacular fireball, with about half of all these meteors coming from a common radiant. 20 members of a potential new shower were found in the records of three PFN stations. Almost all meteors were captured after 23h UT, some of them in the morning twilight. The Polish observers concluded in 2005 they observed an outburst of this new unknown radiant. Unfortunately, due to unfavorable geometrics no accurate orbit could be derived for the new shower. The ZCS#444 shower was also confirmed by the shower search on the CAMS orbits obtained in 2011 and 2012 (Jenniskens et al., 2016). Strange enough, it is still waiting to be recognized as an established meteor shower despite the weight of evidence for the existence of this shower. The photographic meteor orbit catalogue with 4873 accurate photographic orbits obtained between 1936 and Figure 1 – Screenshot of the CAMS radiant plot for the night of 2008 resulted in only eight possible ζ-Cassiopeiids orbits, 2018 July 15 with the Zeta Cassiopeiids (ZCS-444) as well as a in 1953, 1956, two in 1958, 1959, 1965, 1969 and 1979. few ‘real’ early Perseid radiants. Four of these orbits match the ζ-Cassiopeiids parent orbit within a high threshold D-Criterion. The Harvard radar 2 ZCS (444) history orbit catalogues 1961–1965 and 1968–1969 (Hawkins, This shower was discovered in 2012 by the Croatian Meteor 1963) contain only one orbit with a high threshold of Network from a radiant analysis on the 853 orbits collected DD < 0.04. The rather small number of ζ-Cassiopeiid orbits in 2007 which failed association with any known meteor collected before the large-scale video meteor observing stream (Šegon et al., 2012). The discovery followed a networks got started explains why this shower wasn’t detailed analysis of the 2007 CMN orbit data and CMN data noticed earlier. of the following years as well as on the available SonotaCo orbit data. As many as 55 orbits fulfilled the Southworth © eMeteorNews 225 2018 – 5 eMeteorNews 3 The available orbit data likes fail to fulfill even the weakest D-criteria. The nearby early Perseid radiant may explain to some extent the We have the following data, status as until July 2018, important sporadic or rather other shower contamination of available for our search: the selection. This explains why this shower remained ‘invisible’ for visual observers until the small outburst in • EDMOND EU+world with 317830 orbits (until 2016). 2005 caught the attention of the Polish team. It is a pity that EDMOND collects data from different European no performant camera networks were active at the time of networks which altogether operate 311 cameras the reported outburst (2005). (Kornos et al., 2014). • SonotaCo with 257010 orbits (2007–2017). SonotaCo Table 1 – The median values for each sub-set of orbits that fulfill is an amateur video network with over 100 cameras in DD<0.105, CAMS, SonotaCo and EDMOND, all combined orbits Japan (SonotaCo, 2009). and the final
Recommended publications
  • Download This Article in PDF Format
    A&A 598, A40 (2017) Astronomy DOI: 10.1051/0004-6361/201629659 & c ESO 2017 Astrophysics Separation and confirmation of showers? L. Neslušan1 and M. Hajduková, Jr.2 1 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovak Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84504 Bratislava, Slovak Republic e-mail: [email protected] Received 6 September 2016 / Accepted 30 October 2016 ABSTRACT Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance.
    [Show full text]
  • 17. a Working List of Meteor Streams
    PRECEDING PAGE BLANK NOT FILMED. 17. A Working List of Meteor Streams ALLAN F. COOK Smithsonian Astrophysical Observatory Cambridge, Massachusetts HIS WORKING LIST which starts on the next is convinced do exist. It is perhaps still too corn- page has been compiled from the following prehensive in that there arc six streams with sources: activity near the threshold of detection by pho- tography not related to any known comet and (1) A selection by myself (Cook, 1973) from not sho_m to be active for as long as a decade. a list by Lindblad (1971a), which he found Unless activity can be confirmed in earlier or from a computer search among 2401 orbits of later years or unless an associated comet ap- meteors photographed by the Harvard Super- pears, these streams should probably be dropped Sehmidt cameras in New Mexico (McCrosky and from a later version of this list. The author will Posen, 1961) be much more receptive to suggestions for dele- (2) Five additional radiants found by tions from this list than he will be to suggestions McCrosky and Posen (1959) by a visual search for additions I;o it. Clear evidence that the thresh- among the radiants and velocities of the same old for visual detection of a stream has been 2401 meteors passed (as in the case of the June Lyrids) should (3) A further visual search among these qualify it for permanent inclusion. radiants and velocities by Cook, Lindblad, A comment on the matching sets of orbits is Marsden, McCrosky, and Posen (1973) in order. It is the directions of perihelion that (4) A computer search
    [Show full text]
  • Meteor Shower Detection with Density-Based Clustering
    Meteor Shower Detection with Density-Based Clustering Glenn Sugar1*, Althea Moorhead2, Peter Brown3, and William Cooke2 1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 2NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, AL, 35812 3Department of Physics and Astronomy, The University of Western Ontario, London N6A3K7, Canada *Corresponding author, E-mail: [email protected] Abstract We present a new method to detect meteor showers using the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN; Ester et al. 1996). DBSCAN is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all-sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large datasets. We apply this shower detection algorithm on a dataset that contains 25,885 meteor trajectories and orbits obtained from the NASA All-Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun-centered ecliptic radiant, we find 25 strong cluster detections and 6 weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false positive/negative analysis and with a comparison to an established shower detection algorithm. 1. Introduction A meteor shower and its stream is implicitly defined to be a group of meteoroids moving in similar orbits sharing a common parentage.
    [Show full text]
  • Smithsonian Contributions Astrophysics
    SMITHSONIAN CONTRIBUTIONS to ASTROPHYSICS Number 14 Discrete Levels off Beginning Height off Meteors in Streams By A. F. Cook Number 15 Yet Another Stream Search Among 2401 Photographic Meteors By A. F. Cook, B.-A. Lindblad, B. G. Marsden, R. E. McCrosky, and A. Posen Smithsonian Institution Astrophysical Observatory Smithsonian Institution Press SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS NUMBER 14 A. F. cook Discrete Levels of Beginning Height of Meteors in Streams SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1973 Publications of the Smithsonian Institution Astrophysical Observatory This series, Smithsonian Contributions to Astrophysics, was inaugurated in 1956 to provide a proper communication for the results of research conducted at the Astrophysical Observatory of the Smithsonian Institution. Its purpose is the "increase and diffusion of knowledge" in the field of astrophysics, with particular emphasis on problems of the sun, the earth, and the solar system. Its pages are open to a limited number of papers by other investigators with whom we have common interests. Another series, Annals of the Astrophysical Observatory, was started in 1900 by the Observa- tory's first director, Samuel P. Langley, and was published about every ten years. These quarto volumes, some of which are still available, record the history of the Observatory's researches and activities. The last volume (vol. 7) appeared in 1954. Many technical papers and volumes emanating from the Astrophysical Observatory have appeared in the Smithsonian Miscellaneous Collections. Among these are Smithsonian Physical Tables, Smithsonian Meteorological Tables, and World Weather Records. Additional information concerning these publications can be obtained from the Smithsonian Institution Press, Smithsonian Institution, Washington, D.C.
    [Show full text]
  • Aa501 Graphicx Document an Artificial Meteors Database As a Test for The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server aa501 graphicx document An artificial meteors database as a test for the presence of weak showers Arkadiusz Olech 1 and Mariusz Wi´sniewski 2 A.Olech Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa, Poland Received .................., 2001; accepted ................ 2002 We have constructed an artificial meteor database resembling in all details the real sample collected by the observers of the Comets and Meteors Workshop in the years 1996-1999. The artificial database includes the sporadic meteors and also events from the following showers: Perseids, Aquarid complex, α- Capricornids, July Pegasids and Sagittarids. This database was searched for the presence of the radiants of two weak showers: α-Cygnids and Delphinids. The lack of these radiants in the artificial database and their existence in the real observations suggests that α-Cygnids and Delphinids are the real showers and their radiants could not be formed as an effect of intersections of back prolongated paths of meteors belonging to other showers. Solar System – meteors – α-Cygnids, Delphinids An artificial meteors database as a test ... Introduction Recently, Polish observers taking part in the Comets and Meteors Workshop (CMW) have reported the rediscovery of two July meteor showers - α-Cygnids and Delphinids (Olech et al. 1999a, 1999b, Stelmach & Olech 2000, Wi´sniewski & Olech 2000, 2001). Both of these showers are weak with maximum Zenithal Hourly Rates (ZHRs) slightly exceeding or laying beneath the sporadic background. The α-Cygnids are active from the end of June until the end of July.
    [Show full text]
  • 96P/Machholz
    The age of the meteoroid complex of comet 96P/Machholz Abedin Y. Abedin Paul A. Wiegert Petr Pokorny Peter G. Brown Introduction • Associated with 8 meteor showers - QUA, ARI, SDA, NDA, KVE, Carinids, 훂-Cetids, Ursids. (Babadzhanov & Obrubov, 1992) • Previous age estimates – QUA, ARI, SDA, NDA => 2200 - 7000 years Jones & Jones (1993), Wu & Williams (1993), Neslusan et al. (2013) • Recently ARI, SDA, NDA associated with the Marsden group of comets – Ohtsuka et al. (2003), Sekanina & Chodas (2005), Jenniskens (2012) – ARI, SDA, NDA, along with Marsden group of comets, formed between 100 AD – 900 AD Our work • Simulations of stream formation. – 96P/Machholz => 20000 BC – Marsden group (P/1999 J6) => 100 AD • We find by simultaneously fitting shower profiles, radiant and orbital elements that: 1. We find that 96P contributes to all 8 showers, whereas P/1999 J6 to only 3. 2. Marsden group of comets alone can not explain the observed duration of the showers. 3. The complex is much older that previously suggested Results from simulations Showers of 96P/Machholz Showers of P/1999 J6 Meteoroid ejection 20000 BC Meteoroid ejection onset 100 AD QUA NID ARI NDA ARI SDA DLT SDA KVE TCA KVE 90 <-- 0 <-- 270 <--180 <-- 90 90 <-- 0 <-- 270 <--180 <-- 90 Southern Delta Aquariids (SDA) Age: 100 AD Parent body: Marsden group of comets (P/1999 J6) Sekanina & Chodas (2005) Ejection epoch Residuals Grey – observations Red - Simulations SDA – Continued Meteoroid Ejection onset time: 20000 BC Assumed parent body: 96P/Machholz Ejection epoch Residuals Grey – observations Red - Simulations SDA – Combined profile Marsden group (P/1999 J6) => 100 AD 96P/Machholz => 20000 BC Ejection epoch Residuals Grey – observations Red - Simulations SDA – radiant drift and position SDA Daytime Lambda Taurids Origin from comet 96P/Machholz => 20000 BC Ejection epoch Residuals Grey – observations Red - Simulations Radiant drift Daytime Lambda Taurids Radiant position DLT Cont.
    [Show full text]
  • The Status of the NASA All Sky Fireball Network
    https://ntrs.nasa.gov/search.jsp?R=20120004179 2019-08-30T19:42:51+00:00Z The Status of the NASA All Sky Fireball Network William J. Cooke Meteoroid Environment Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 USA. [email protected] Danielle E. Moser MITS/Dynetics, NASA Marshall Space Flight Center, Huntsville, AL 35812 USA. [email protected] Abstract Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results. 1 Introduction The NASA Meteoroid Environment Office (MEO), located at the Marshall Space Flight Center in Huntsville, Alabama, USA, is the NASA organization responsible for meteoroid environments as they pertain to spacecraft engineering and operations. Understanding the meteoroid environment can help spacecraft designers to better protect critical components on spacecraft or avoid critical operations such as extravehicular activities during periods of higher flux such as meteor showers. In mid-2008, the MEO established the NASA All Sky Fireball Network, a network of meteor cameras in the southern United States. The objectives of this video network are to 1) establish the speed distribution of cm-sized meteoroids, 2) determine which sporadic sources produce large particles, 3) determine (low precision) orbits for bright meteors, 4) attempt to discover the size at which showers begin to dominate the meteoroid flux, 5) monitor the activity of major meteor showers, and 6) assist in the location of meteorite falls.
    [Show full text]
  • Confirmation of the Northern Delta Aquariids
    WGN, the Journal of the IMO XX:X (200X) 1 Confirmation of the Northern Delta Aquariids (NDA, IAU #26) and the Northern June Aquilids (NZC, IAU #164) David Holman1 and Peter Jenniskens2 This paper resolves confusion surrounding the Northern Delta Aquariids (NDA, IAU #26). Low-light level video observations with the Cameras for All-sky Meteor Surveillance project in California show distinct showers in the months of July and August. The July shower is identified as the Northern June Aquilids (NZC, IAU #164), while the August shower matches most closely prior data on the Northern Delta Aquariids. This paper validates the existence of both showers, which can now be moved to the list of established showers. The August Beta Piscids (BPI, #342) is not a separate stream, but identical to the Northern Delta Aquariids, and should be discarded from the IAU Working List. We detected the Northern June Aquilids beginning on June 14, through its peak on July 11, and to the shower's end on August 2. The meteors move in a short-period sun grazing comet orbit. Our mean orbital elements are: q = 0:124 0:002 AU, 1=a = 0:512 0:014 AU−1, i = 37:63◦ 0:35◦, ! = 324:90◦ 0:27◦, and Ω = 107:93 0:91◦ (N = 131). This orbit is similar to that of sungrazer comet C/2009 U10. ◦ ◦ 346.4 , Decl = +1.4 , vg = 38.3 km/s, active from so- lar longitude 128.8◦ to 151.17◦. This position, however, 1 Introduction is the same as that of photographed Northern Delta Aquariids.
    [Show full text]
  • ISSN 2570-4745 VOL 4 / ISSUE 5 / OCTOBER 2019 Bright Perseid With
    e-Zine for meteor observers meteornews.net ISSN 2570-4745 VOL 4 / ISSUE 5 / OCTOBER 2019 Bright Perseid with fares. Canon 6D with Rokinon 24mm lens at f/2.0 on 2019 August 13, at 3h39m am EDT by Pierre Martin EDMOND Visual observations CAMS BeNeLux Radio observations UAEMM Network Fireballs 2019 – 5 eMeteorNews Contents Problems in the meteor shower definition table in case of EDMOND Masahiro Koseki ..................................................................................................................................... 265 July 2019 report CAMS BeNeLux Paul Roggemans ...................................................................................................................................... 271 August 2019 report CAMS BeNeLux Paul Roggemans ...................................................................................................................................... 273 The UAEMMN: A prominent meteor monitoring system in the Gulf Region Dr. Ilias Fernini, Aisha Alowais, Mohammed Talafha, Maryam Sharif, Yousef Eisa, Masa Alnaser, Shahab Mohammad, Akhmad Hassan, Issam Abujami, Ridwan Fernini and Salma Subhi .................... 275 Summer observations 2019 Pierre Martin........................................................................................................................................... 278 Radio meteors July 2019 Felix Verbelen ......................................................................................................................................... 289 Radio meteors August 2019
    [Show full text]
  • Craters and Airbursts
    Craters and Airbursts • Most asteroids and comets fragments explode in the air as fireballs or airbursts; only the largest ones make craters. • Evidence indicates that the YDB impact into the Canadian ice sheet made ice-walled craters that melted away long ago. • The YDB impact also possibly created rocky craters, most likely along the edge of the ice sheet in Canada or underwater in the oceans. • Our group is planning expeditions to search for impact evidence and hidden craters, for example to North Dakota, Montana, Quebec, and Nova Scotia. The following pages show what could happen during an impact NOTE: this website is a brief, non-technical introduction to the YDB impact hypothesis. For in-depth information, go to “Publications” to find links to detailed scientific papers. NAME OF SHOWER NAME OF SHOWER Alpha Aurigids Leo Minorids Meteor Showers Alpha Bootids Leonids Alpha Capricornids Librids Alpha Carinids Lyrids Comet impacts are common, Alpha Centaurids Monocerotids Alpha Crucids Mu Virginids but usually, they are harmless Alpha Cygnids Northern Delta Aquariids Alpha Hydrids Northern Iota Aquariids Alpha Monocerotids Northern Taurids Alpha Scorpiids October Arietids • Earth is hit by 109 meteor Aries-triangulids Omega Capricornids Arietids Omega Scorpiids showers every year (listed at Beta Corona Austrinids Omicron Centaurids right), averaging 2 collisions Chi Orionids Orionids Coma Berenicids Perseids with streams each week Delta Aurigids Phoenicids Delta Cancrids Pi Eridanids Delta Eridanids Pi Puppids • Oddly, most “meteor showers”
    [Show full text]
  • Active Asteroids in the NEO Population Peter Jenniskens SETI Institute 189 Bernardo Ave, Mountain View, CA 94043, USA Email: [email protected]
    Asteroids: New Observations, New Models Proceedings IAU Symposium No. 318, 2015 c International Astronomical Union 2016 S. R. Chesley, A. Morbidelli, R. Jedicke & D. Farnocchia, eds. doi:10.1017/S1743921315009631 Active Asteroids in the NEO Population Peter Jenniskens SETI Institute 189 Bernardo Ave, Mountain View, CA 94043, USA email: [email protected] Abstract. Some main-belt asteroids evolve into near-Earth objects. They can then experience the same meteoroid-producing phenomena as active asteroids in the main belt. If so, they would produce meteoroid streams, some of which evolve to intersect Earth’s orbit and produce me- teor showers at Earth. Only few of those are known. Meteoroid streams that move in orbits with Tisserand parameter well in excess of 3 are the Geminids and Daytime Sextantids of the Phaethon complex and the lesser known epsilon Pegasids. The observed activity appears to be related to nearly whole scale disintegrations, rather than dust ejection from volatile outgassing as observed in active comets. There is only a small population of asteroids with a main-belt origin that recently disintegrated into meteoroid streams. Keywords. meteors, meteoroids, comets: general, minor planets, asteroids 1. Introduction Asteroids in the main asteroid belt are known to produce dust from an episodic comet- like outgassing of volatiles, from the incidental collision with smaller asteroids, or from occasional disruptions of rubble-pile asteroids by spin-up or other mechanisms (Jewitt et al., 2015). All these mechanisms could also act on the same asteroids after they have evolved into resonances and have been perturbed into more eccentric orbits that bring them close to Earth.
    [Show full text]
  • Program of the 34 International Meteor Conference
    Program & abstracts of the IMC, Mistelbach, 2015 1 Program of the 34th International Meteor Conference Mistelbach , 27–30 August, 2015 Thursday, 27 August, 2015 14:00 – 19:00 Arrival and registration IMC participants at the Fachschule in Mistelbach, (for the residents of hotel Klaus the registration desk is at the hotel in Wolkersdorf). 19:00 – 19:30 Opening and welcome speeches. Opening of the 34th IMC by Cis Verbeeck; Welcome speech by Thomas Weiland, Chairman of the IMC-LOC; Welcome speech by Alexander Pikhard, President of the Wiener Arbeitsgemeinschaft für Astronomie; Practical announcements by Anneliese Haika. 20:00 – 21:00 Dinner (MAMUZ Museum - M-Zone). 21:00 – 22:00 Galina Ryabova. “MetLib Workshop” (Fachschule Mistelbach). 21:00 – … Informal socializing (IMC bar – Fachschule Mistelbach). A shuttle service is available for residents of hotel Klaus, departure see at the entrance IMC-bar. Friday, 28 August, 2015 07:30 – 08:30 Breakfast. Session 1 Observing and analyzing techniques (MAMUZ Museum - Kapelle). (Chair: Megan Argo). 09:00 – 09:25 Sirko Molau. “Population index reloaded”. 09:25 – 09:45 Pete Gural. “The American Meteor Society's filter bank spectroscopy project”. 09:45 – 10:00 Denis Vida. “Video meteor detection filtering using soft computing methods”. 10:00 – 10:15 Kristina Veljković. “Improvement of software for analysis of visual meteor data ”. 10:15 – 10:30 Richard Fleet. “Correlating video meteors with GRAVES radio detections from the UK”. 10:30 – 10:45 Debora Pavela & Miroslav Živanović. “The effective number of shower meteors in a reduced field of view”. 10:45 – 11:15 Coffee break & Poster Session. Session 2 Status of meteor camera networks.
    [Show full text]