A Compound Dirichlet-Multinomial Model for Provincial Level Covid-19 Predictions in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

A Compound Dirichlet-Multinomial Model for Provincial Level Covid-19 Predictions in South Africa medRxiv preprint doi: https://doi.org/10.1101/2020.06.15.20131433; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. A compound Dirichlet-Multinomial model for provincial level Covid-19 predictions in South Africa Alta de Waal*1,2Daan de Waal1,3 1 Department of Statistics, University of Pretoria, Pretoria, South Africa 2 Center for Artificial Intelligence (CAIR), Pretoria, South Africa 3 Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein, South Africa * [email protected] Abstract 1 Accurate prediction of COVID-19 related indicators such as confirmed cases, deaths and 2 recoveries play an important in understanding the spread and impact of the virus, as 3 well as resource planning and allocation. In this study, we approach the prediction 4 problem from a statistical perspective and predict confirmed cases and deaths on a 5 provincial level. We propose the compound Dirichlet Multinomial distribution to 6 estimate the proportion parameter of each province as mutually exclusive outcomes. 7 Furthermore, we make an assumption of exponential growth of the total cummulative 8 counts in order to predict future total counts. The outcomes of this approach is not 9 only prediction. The variation of the proportion parameter is characterised by the 10 Dirichlet distribution, which provides insight in the movement of the pandemic across 11 provinces over time. 12 Introduction 13 The global COVID-19 (C19) pandemic has urged governments globally to rapidly 14 implement measures to reduce the number of infected cases and reduce pressure on the 15 June 15, 2020 1/17 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.06.15.20131433; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. health care system. Strategic decisions on measures such as quarantine, economic 16 lockdown and social distancing depend on projections of number of infections, people 17 requiring urgent medical attention and mortality. Already early on in the pandemic, it 18 became clear that data on confirmed cases are plagued with uncertainty, because of the 19 high number of asymptomatic cases, varying test protocols per country [1], as well as 20 different symptoms in different regions [2]. For example, one mathematical approach to 21 understanding the spread of infections is compartmental models such as Susceptible 22 Exposed Infectious Recovered (SEIR) and Susceptible Infectious Recovered (SIR) 23 models [3{5]. 24 The approach of this paper is to predict the cummulative count of C19 confirmed 25 cases and deaths across provinces in South Africa. We provide the following arguments 26 for this approach: 27 • The spread of the pandemic in a country is not uniform, but characterized by 28 regional hotspots such as Northern Italy [6] in Italy and New York in the USA. 29 • Although the test protocols and definition of infection may vary across 30 countries [1], it is more likely to be consistent for multiple regions within a single 31 country. Therefore, it makes sense to model the dependencies between provinces. 32 • For the purpose of resource planning and mitigation strategies, it is important to 33 understand how the pandemic spreads and moves across provincial or district 34 borders and how the infection proportions change over time. Our modelling 35 approach shows the change in counts as proportions across provinces. 36 A simple approach to such a model would be the Multinomial distribution, a 37 multivariate discrete distribution which models multiple mutually exclusive outcomes. 38 The simplest application of the Multinomial distribution is determing whether a 39 six-sided die is biased. This is determined by calculating the probability of throwing 40 each one of the numbers from 1{6 by throwing the die multiple times. Uneven 41 probabilities for one of the numbers might indicate an unfair die. There is, however, 42 uncertainty associated with these calculated probabilities, which can be accounted for 43 by following a Bayesian approach to the problem and fitting a prior to the Multinomial 44 probability parameter. The conjugate prior for the Multinomial distribution is the 45 June 15, 2020 2/17 medRxiv preprint doi: https://doi.org/10.1101/2020.06.15.20131433; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Dirichlet distribution which allows us to calculate a posterior distribution over the 46 Multinomial proportions. This approach forms the basis of our methodology which we 47 describe in more detail in the next section. The methodology is followed by a 48 description of the South African data and then the application. We conclude the paper 49 with a discussion of the results and future work. 50 Methodology 51 The structure of the methodology section is as follows: We first describe the nature of 52 categorical count data before introducing the compound Dirichlet Multinomial 53 distribution and describing the methodology in detail according to these steps: 54 1. Update Dirichlet parameter. 55 2. Estimate categorical counts. 56 3. Validate the estimations with Q-Q plots. 57 4. Predict future total counts. 58 5. Validate predictions. 59 6. Predict future categorical counts 60 Categorical data 61 Consider a sequence of N observations x1; :::; xN where each observation xi is a vector 62 of length K, the number of categories, denoting numbers from 1; :::; M such that 63 PK k=1 xik = M. 64 Illustration 1: Let's say K = 4 and M = 123. Then xi = [13; 12; 42; 56] can be an 65 observation. This is an outcome of the Multinomial distribution with parameters M 66 and Y . N such outcomes are observed and denoted by the matrix X with N rows and 67 K columns. The objective is to estimate a future outcome xN+1 given M. The 68 PK unknown parameter Y = y1; :::; yK (where k=1 yk = 1), however, varies all the time 69 and this variability is characterized by the Dirichlet distribution [7]. 70 June 15, 2020 3/17 medRxiv preprint doi: https://doi.org/10.1101/2020.06.15.20131433; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. The Dirichlet distribution of Y has parameters α = (α1; ::; αK ) which are positive 71 real numbers and the density function given by [8]: 72 P Γ( k αk) Y αk−1 p(Y jα) = Q Yk : (1) Γ(αk) k k Conceptually, we are making N independent draws from a categorical distribution with 73 K categories. Let us represent the N draws as random draws on the K variables and 74 denote the number of times a particular category k has been seen among K categories 75 PN as nk with i=1 xik = nk. 76 Illustration 2: Moving closer to the application of this study and following up on 77 Illustration 1 with K = 4 and M = 264, let N = 17 and suppose N is the number of 78 days in the recorded dataset used to get to nk. The variable of interest is the number of 79 C19 deaths per day. After 17 days of daily observations of the number of C19 deaths, 80 suppose the totals for 4 categories (provinces) are n1 = 34; n2 = 27; n3 = 56; n4 = 153 81 with a total of M = 270 deaths. Daily observations are not important, only the totals 82 after the N = 17 days. This is due to the fact that the likelihood function (discussed 83 next) in the predictive distribution only depends on the numbers nk from the last 84 observation. In the next section we introduce the compound Dirichlet Multinomial 85 distribution. 86 The compound Dirichlet Multinomial distribution 87 Assume Y is distributed Dirichlet(α1; ::; αK ) and draw Y = y1; :::; yK from this distribution. XjY ∼ MN(M; Y ) and the marginal distribution of X is referred to as a compound Dirichlet-Multinomial (CDM) distribution with parameters M and PK (α1; ::; αK ) [9]. Let k=1 αk = α0. The density function is given by: f(XjM; α1; ::; αK ) = p(xjM; )p(Y jα1; ::; αK ) Y nk Γ(α0) Y αk−1 = yk × Q yk Γ(αk) k k k Γ(α0) Y nk+αk−1 = Q yk Γ(αk) k k Q Γ(α0) k Γ(αk + nk) = Q : (2) k Γ(αk) Γ(α0 + nk) June 15, 2020 4/17 medRxiv preprint doi: https://doi.org/10.1101/2020.06.15.20131433; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. PK The conditions k=1 nk = M; xi ≥ 0;nk > 0; αk > 0 must hold. 88 In a Bayesian framework, the predictive density function of a future X, say Z [10] 89 where ZjM ∼ MN(M; Y ) and Y jα1; ::; αK ∼ Dirichlet(α1; ::; αK ) is similar to the CDM 90 density function: Given xi with values n(1); :::; n(N) of observed x values, the predictive 91 distribution of Zjn(1); :::; n(N) ∼ CDM(M; (α1 + n(1); ::; αK + n(K)).
Recommended publications
  • Package 'Distributional'
    Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma
    [Show full text]
  • Fisher Information Matrix for Gaussian and Categorical Distributions
    Fisher information matrix for Gaussian and categorical distributions Jakub M. Tomczak November 28, 2012 1 Notations Let x be a random variable. Consider a parametric distribution of x with parameters θ, p(xjθ). The contiuous random variable x 2 R can be modelled by normal distribution (Gaussian distribution): 1 n (x − µ)2 o p(xjθ) = p exp − 2πσ2 2σ2 = N (xjµ, σ2); (1) where θ = µ σ2T. A discrete (categorical) variable x 2 X , X is a finite set of K values, can be modelled by categorical distribution:1 K Y xk p(xjθ) = θk k=1 = Cat(xjθ); (2) P where 0 ≤ θk ≤ 1, k θk = 1. For X = f0; 1g we get a special case of the categorical distribution, Bernoulli distribution, p(xjθ) = θx(1 − θ)1−x = Bern(xjθ): (3) 2 Fisher information matrix 2.1 Definition The Fisher score is determined as follows [1]: g(θ; x) = rθ ln p(xjθ): (4) The Fisher information matrix is defined as follows [1]: T F = Ex g(θ; x) g(θ; x) : (5) 1We use the 1-of-K encoding [1]. 1 2.2 Example 1: Bernoulli distribution Let us calculate the fisher matrix for Bernoulli distribution (3). First, we need to take the logarithm: ln Bern(xjθ) = x ln θ + (1 − x) ln(1 − θ): (6) Second, we need to calculate the derivative: d x 1 − x ln Bern(xjθ) = − dθ θ 1 − θ x − θ = : (7) θ(1 − θ) Hence, we get the following Fisher score for the Bernoulli distribution: x − θ g(θ; x) = : (8) θ(1 − θ) The Fisher information matrix (here it is a scalar) for the Bernoulli distribution is as follows: F = Ex[g(θ; x) g(θ; x)] h (x − θ)2 i = Ex (θ(1 − θ))2 1 n o = [x2 − 2xθ + θ2] (θ(1 − θ))2 Ex 1 n o = [x2] − 2θ [x] + θ2 (θ(1 − θ))2 Ex Ex 1 n o = θ − 2θ2 + θ2 (θ(1 − θ))2 1 = θ(1 − θ) (θ(1 − θ))2 1 = : (9) θ(1 − θ) 2.3 Example 2: Categorical distribution Let us calculate the fisher matrix for categorical distribution (2).
    [Show full text]
  • Categorical Distributions in Natural Language Processing Version 0.1
    Categorical Distributions in Natural Language Processing Version 0.1 MURAWAKI Yugo 12 May 2016 MURAWAKI Yugo Categorical Distributions in NLP 1 / 34 Categorical distribution Suppose random variable x takes one of K values. x is generated according to categorical distribution Cat(θ), where θ = (0:1; 0:6; 0:3): RYG In many task settings, we do not know the true θ and need to infer it from observed data x = (x1; ··· ; xN). Once we infer θ, we often want to predict new variable x0. NOTE: In Bayesian settings, θ is usually integrated out and x0 is predicted directly from x. MURAWAKI Yugo Categorical Distributions in NLP 2 / 34 Categorical distributions are a building block of natural language models N-gram language model (predicting the next word) POS tagging based on a Hidden Markov Model (HMM) Probabilistic context-free grammar (PCFG) Topic model (Latent Dirichlet Allocation (LDA)) MURAWAKI Yugo Categorical Distributions in NLP 3 / 34 Example: HMM-based POS tagging BOS DT NN VBZ VBN EOS the sun has risen Let K be the number of POS tags and V be the vocabulary size (ignore BOS and EOS for simplicity). The transition probabilities can be computed using K categorical θTRANS; θTRANS; ··· distributions ( DT NN ), with the dimension K. θTRANS = : ; : ; : ; ··· DT (0 21 0 27 0 09 ) NN NNS ADJ Similarly, the emission probabilities can be computed using K θEMIT; θEMIT; ··· categorical distributions ( DT NN ), with the dimension V. θEMIT = : ; : ; : ; ··· NN (0 012 0 002 0 005 ) sun rose cat MURAWAKI Yugo Categorical Distributions in NLP 4 / 34 Outline Categorical and multinomial distributions Conjugacy and posterior predictive distribution LDA (Latent Dirichlet Applocation) as an application Gibbs sampling for inference MURAWAKI Yugo Categorical Distributions in NLP 5 / 34 Categorical distribution: 1 observation Suppose θ is known.
    [Show full text]
  • Package 'Extradistr'
    Package ‘extraDistr’ September 7, 2020 Type Package Title Additional Univariate and Multivariate Distributions Version 1.9.1 Date 2020-08-20 Author Tymoteusz Wolodzko Maintainer Tymoteusz Wolodzko <[email protected]> Description Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson. License GPL-2 URL https://github.com/twolodzko/extraDistr BugReports https://github.com/twolodzko/extraDistr/issues Encoding UTF-8 LazyData TRUE Depends R (>= 3.1.0) LinkingTo Rcpp 1 2 R topics documented: Imports Rcpp Suggests testthat, LaplacesDemon, VGAM, evd, hoa,
    [Show full text]
  • Chapter 9. Exponential Family of Distributions
    Machine Learning for Engineers: Chapter 9. Exponential Family of Distributions Osvaldo Simeone King's College London January 26, 2021 Osvaldo Simeone ML4Engineers 1 / 97 This Chapter In the previous chapters, we have adopted a limited range of probabilistic models, namely Bernoulli and categorical for discrete rvs and Gaussian for continuous rvs. While these are the most common modelling choices, they clearly do not represent many important situations. Examples: I Discrete data may a priori take arbitrarily large values, making Bernoulli and categorical models not suitable F ex.: waiting times for next arrival in a queue; I Continuous data may be non-negative, making Gaussian models not suitable F ex.: measurements of weights or heights. Osvaldo Simeone ML4Engineers 2 / 97 This Chapter Furthermore, we have seen that Bernoulli, categorical, and Gaussian distributions share several common features: I The gradient of the log-loss with respect to the model parameters can be expressed in terms of a mean error that measures the difference between mean under the model and observation (see Chapters 4 and 6); I ML learning can be solved in closed form by evaluating empirical averages (see Chapters 3, 4, and 6); I Information-theoretic quantities such as (differential) entropy and KL divergence can be computed in closed form (see Chapter 3). Osvaldo Simeone ML4Engineers 3 / 97 This Chapter In this chapter, we will introduce a general family of distributions that includes Bernoulli, categorical, and Gaussian as special cases: the exponential family of distributions. The family is much larger, and it also encompasses distributions such as I Poisson and geometric distributions, whose support is discrete and includes all integers; I exponential and gamma distributions, whose support is continuous and includes only non-negative values.
    [Show full text]
  • Discrete Categorical Distribution
    Discrete Categorical Distribution Carl Edward Rasmussen November 11th, 2016 Carl Edward Rasmussen Discrete Categorical Distribution November 11th, 2016 1 / 8 Key concepts We generalize the concepts from binary variables to multiple discrete outcomes. • discrete and multinomial distributions • the Dirichlet distribution Carl Edward Rasmussen Discrete Categorical Distribution November 11th, 2016 2 / 8 The multinomial distribution (1) Generalisation of the binomial distribution from 2 outcomes to m outcomes. Useful for random variables that take one of a finite set of possible outcomes. Throw a die n = 60 times, and count the observed (6 possible) outcomes. Outcome Count X = x1 = 1 k1 = 12 X = x2 = 2 k2 = 7 Note that we have one parameter too many. We X = x3 = 3 k3 = 11 don’t need to know all the ki and n, because 6 X = x4 = 4 k4 = 8 i=1 ki = n. X = x5 = 5 k5 = 9 P X = x6 = 6 k6 = 13 Carl Edward Rasmussen Discrete Categorical Distribution November 11th, 2016 3 / 8 The multinomial distribution (2) Consider a discrete random variable X that can take one of m values x1,..., xm. Out of n independent trials, let ki be the number of times X = xi was observed. m It follows that i=1 ki = n. m Denote by πi the probability that X = xi, with i=1 πi = 1. P > The probability of observing a vector of occurrences k = [k1,..., km] is given by P > the multinomial distribution parametrised by π = [π1,..., πm] : n! ki p(kjπ, n) = p(k1,..., kmjπ1,..., πm, n) = πi k !k !... km! 1 2 i= Y1 • Note that we can write p(kjπ) since n is redundant.
    [Show full text]
  • The Continuous Categorical: a Novel Simplex-Valued Exponential Family
    The Continuous Categorical: A Novel Simplex-Valued Exponential Family Elliott Gordon-Rodriguez 1 Gabriel Loaiza-Ganem 2 John P. Cunningham 1 Abstract cal relevance across the natural and social sciences (see Pawlowsky-Glahn & Egozcue(2006); Pawlowsky-Glahn Simplex-valued data appear throughout statistics & Buccianti(2011); Pawlowsky-Glahn et al.(2015) for an and machine learning, for example in the context overview). Prominent examples appear in highly cited work of transfer learning and compression of deep net- ranging from geology (Pawlowsky-Glahn & Olea, 2004; works. Existing models for this class of data rely Buccianti et al., 2006), chemistry (Buccianti & Pawlowsky- on the Dirichlet distribution or other related loss Glahn, 2005), microbiology (Gloor et al., 2017), genetics functions; here we show these standard choices (Quinn et al., 2018), psychiatry (Gueorguieva et al., 2008), suffer systematically from a number of limitations, ecology (Douma & Weedon, 2019), environmental science including bias and numerical issues that frustrate (Filzmoser et al., 2009), materials science (Na et al., 2014), the use of flexible network models upstream of political science (Katz & King, 1999), public policy (Bre- these distributions. We resolve these limitations unig & Busemeyer, 2012), economics (Fry et al., 2000), and by introducing a novel exponential family of dis- the list goes on. An application of particular interest in ma- tributions for modeling simplex-valued data – the chine learning arises in the context of model compression, continuous categorical, which arises as a nontriv- where the class probabilities outputted by a large model are ial multivariate generalization of the recently dis- used as ‘soft targets’ to train a small neural network (Bu- covered continuous Bernoulli.
    [Show full text]
  • Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
    Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data Yarin Gal Yutian Chen Zoubin Ghahramani University of Cambridge f yg279, yc373, zoubin [email protected] Abstract Multivariate categorical data occur in many applications of machine learning, such as data analysis and language processing. Here we develop a flexible class of models for distribution estimation in such multivariate (i.e. vectors of) categorical data. Multivariate categorical data is challenging because the number of possible discrete observation vectors grows exponentially with the number of categorical variables in the vector. In particular, we address the problem of estimating the distribution when the data is sparsely sampled—i.e. in the typical case when the diversity of the data points is poor compared to the exponentially many possible observations. We make use of a continuous latent Gaussian space, but unlike pre- vious linear approaches, we learn a non-linear transformation between this latent space and the multivariate categorical observation space. Non-linearity is essen- tial for capturing multi-modality in the distribution. Our model ties together many existing models, linking the categorical linear latent Gaussian model, the Gaus- sian process latent variable model, and Gaussian process classification. We derive effective inference for our model based on recent developments in sampling-based variational inference and stochastic optimisation. 1 Introduction Categorical distribution estimation (CDE) forms one of the core problems in machine learning, and can be used to perform tasks ranging from survey analysis (Inoguchi, 2008) to cancer prediction (Zwitter and Soklic, 1988). One of the major challenges in CDE is sparsity. Sparsity can occur either when there is a single categorical variable with many possible values, some appearing scarcely, or when the data consists of vectors of categorical variables, with most configurations of categorical values not in the dataset.
    [Show full text]
  • An R Package for Multivariate Categorical Data Analysis by Juhyun Kim, Yiwen Zhang, Joshua Day, Hua Zhou
    CONTRIBUTED RESEARCH ARTICLE 73 MGLM: An R Package for Multivariate Categorical Data Analysis by Juhyun Kim, Yiwen Zhang, Joshua Day, Hua Zhou Abstract Data with multiple responses is ubiquitous in modern applications. However, few tools are available for regression analysis of multivariate counts. The most popular multinomial-logit model has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article introduces an R package MGLM, short for multivariate response generalized linear models, that expands the current tools for regression analysis of polytomous data. Distribution fitting, random number generation, regression, and sparse regression are treated in a unifying framework. The algorithm, usage, and implementation details are discussed. Introduction Multivariate categorical data arises in many fields, including genomics, image analysis, text mining, and sports statistics. The multinomial-logit model (Agresti, 2002, Chapter 7) has been the most popular tool for analyzing such data. However, it is limiting due to its specific mean-variance structure and the strong assumption that the counts are negatively correlated. Models that address over-dispersion relative to a multinomial distribution and incorporate positive and/or negative correlation structures would offer greater flexibility for analysis of polytomous data. In this article, we introduce an R package MGLM, short for multivariate response generalized linear models. The MGLM package provides a unified framework for random number generation, distribution fitting, regression, hypothesis testing, and variable selection for multivariate response generalized linear models, particularly four models listed in Table1. These models considerably broaden the class of generalized linear models (GLM) for analysis of multivariate categorical data. MGLM overlaps little with existing packages in R and other softwares.
    [Show full text]
  • Probability Distributions: Multinomial and Poisson
    Probability Distributions: Multinomial and Poisson Data Science: Jordan Boyd-Graber University of Maryland JANUARY 21, 2018 Data Science: Jordan Boyd-Graber UMD Probability Distributions: Multinomial and Poisson 1 / 12 j j Multinomial distribution Recall: the binomial distribution is the number of successes from multiple Bernoulli success/fail events The multinomial distribution is the number of different outcomes from multiple categorical events It is a generalization of the binomial distribution to more than two possible outcomes As with the binomial distribution, each categorical event is assumed to be independent Bernoulli : binomial :: categorical : multinomial Examples: The number of times each face of a die turned up after 50 rolls The number of times each suit is drawn from a deck of cards after 10 draws Data Science: Jordan Boyd-Graber UMD Probability Distributions: Multinomial and Poisson 2 / 12 j j Multinomial distribution Notation: let X~ be a vector of length K , where Xk is a random variable that describes the number of times that the kth value was the outcome out of N categorical trials. The possible values of each Xk are integers from 0 to N PK All Xk values must sum to N: k=1 Xk = N Example: if we roll a die 10 times, suppose it X1 = 1 comes up with the following values: X2 = 0 X3 = 3 X~ =< 1,0,3,2,1,3 > X4 = 2 X5 = 1 X6 = 3 The multinomial distribution is a joint distribution over multiple random variables: P(X1,X2,...,XK ) Data Science: Jordan Boyd-Graber UMD Probability Distributions: Multinomial and Poisson 3 / 12 j j Multinomial distribution 3 Suppose we roll a die 3 times.
    [Show full text]
  • CHAPTER 2 Estimating Probabilities
    CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2017. Tom M. Mitchell. All rights reserved. *DRAFT OF January 26, 2018* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR’S PERMISSION* This is a rough draft chapter intended for inclusion in the upcoming second edition of the textbook Machine Learning, T.M. Mitchell, McGraw Hill. You are welcome to use this for educational purposes, but do not duplicate or repost it on the internet. For online copies of this and other materials related to this book, visit the web site www.cs.cmu.edu/∼tom/mlbook.html. Please send suggestions for improvements, or suggested exercises, to [email protected]. Many machine learning methods depend on probabilistic approaches. The reason is simple: when we are interested in learning some target function f : X ! Y, we can more generally learn the probabilistic function P(YjX). By using a probabilistic approach, we can design algorithms that learn func- tions with uncertain outcomes (e.g., predicting tomorrow’s stock price) and that incorporate prior knowledge to guide learning (e.g., a bias that tomor- row’s stock price is likely to be similar to today’s price). This chapter de- scribes joint probability distributions over many variables, and shows how they can be used to calculate a target P(YjX). It also considers the problem of learning, or estimating, probability distributions from training data, pre- senting the two most common approaches: maximum likelihood estimation and maximum a posteriori estimation. 1 Joint Probability Distributions The key to building probabilistic models is to define a set of random variables, and to consider the joint probability distribution over them.
    [Show full text]
  • Distributions.Jl Documentation Release 0.6.3
    Distributions.jl Documentation Release 0.6.3 JuliaStats January 06, 2017 Contents 1 Getting Started 3 1.1 Installation................................................3 1.2 Starting With a Normal Distribution...................................3 1.3 Using Other Distributions........................................4 1.4 Estimate the Parameters.........................................4 2 Type Hierarchy 5 2.1 Sampleable................................................5 2.2 Distributions...............................................6 3 Univariate Distributions 9 3.1 Univariate Continuous Distributions...................................9 3.2 Univariate Discrete Distributions.................................... 18 3.3 Common Interface............................................ 22 4 Truncated Distributions 27 4.1 Truncated Normal Distribution...................................... 28 5 Multivariate Distributions 29 5.1 Common Interface............................................ 29 5.2 Multinomial Distribution......................................... 30 5.3 Multivariate Normal Distribution.................................... 31 5.4 Multivariate Lognormal Distribution.................................. 33 5.5 Dirichlet Distribution........................................... 35 6 Matrix-variate Distributions 37 6.1 Common Interface............................................ 37 6.2 Wishart Distribution........................................... 37 6.3 Inverse-Wishart Distribution....................................... 37 7 Mixture Models 39 7.1 Type
    [Show full text]