<<

Nuclear Magnetic Resonance

Yale Chemistry 800 MHz Supercooled Magnet Bo

Atomic nuclei in Atomic nuclei in the presence The absence of of a a magnetic field α - with the field β spin - opposed to the field The Precessing Nucleus

resonance

α spin β spin Ho resonance

no resonance no resonance

Rf The Precessing Nucleus Again

The Continuous Wave Spectrometer

The Fourier Transform Spectrometer Observable Nuclei

• Odd At. Wt.; s = ±1/2

1 13 15 19 31 Nuclei H1 C6 N7 F9 P15 …. Abundance (%) 99.98 1.1 0.385 100 100

• Odd At. No.; s = ±1

2 14 Nuclei H1 N7 …

• Unobserved Nuclei

12 16 32 C6 O8 S16… •Δ E = hν h = Planck’s constant:1.58x10-37kcal- sec

•Δ E = γh/2π(Bo) γ = Gyromagnetic ratio: sensitivity of nucleus to the magnetic field. 1H = 2.67x104 rad sec-1 gauss-1

• Thus: ν = γ/2π(Bo) • For a , if Bo = 14,092 gauss (1.41 , 1.41 T), ν = 60x106 cycles/sec = 60 MHz and

•Δ EN = Nhν = 0.006 cal/mole Rf Field vs. Magnetic Field for a Proton

E

60 MHz 500 MHz ΔE = γh/2π(Bo) 100 MHz

1.41 T 2.35 T 11.74 T

Bo Rf Field /Magnetic Field for Some Nuclei

o Nuclei Rf (MHz) B (T) γ/2π (MHz/T)

1H 500.00 11.74 42.58

13C 125.74 11.74 10.71

2H 76.78 11.74 6.54

19F 470.54 11.74 40.08

31P 202.51 11.74 17.25 Fortunately, all are not created equal!

at 1.41 T 60 MHz 60,000,000 Hz 60,000,600 Hz

upfield downfield Me Si shielded 4 deshielded 60 Hz 240 Hz

}

10 9 8 7 6 5 4 3 2 1 0 δ scale (ppm)

}

at 500 MHz 500 Hz

chemical δ = (νobs - νTMS)/νinst(MHz) = (240.00 - 0)/60 = 4.00 shift Where Nuclei Resonate at 11.74T

12 ppm 2H

RCO2H 12 ppm 1H (TMS) ~380 ppm

31 P (H3PO4) ~220 ppm

CH4 76.78 220 ppm 19 F (CFCl3)

13 C 500.00 PX3 CPH2 -SO2F -CF2-CF2-

202.51 470.54 125.74 R2C=O RCH3

100 200 300 400 500 MHz Chemical Shifts of Protons The Effect of Electronegativity on Proton Chemical Shifts

TMS

CHCl3 CH2Cl2 CH3Cl CH4

δ=7.26 δ=5.30 δ=3.05 δ=-0.20

10 9 8 7 6 5 4 3 2 1 0 δ TMS

CHBr3 CH2Br2 CH3Br

δ=6.83 δ=4.95 δ=2.68

10 9 8 7 6 5 4 3 2 1 0 δ Chemical Shifts and Integrals

δ 2.2 TMS area = 3 δ 4.0

area = 2

10 9 8 7 6 5 4 3 2 1 0 δ

homotopic enantiotopic protons: protons: chemically chemically and and magnetically Cl magnetically equivalent equivalent H3C C CH2Cl

Cl Spin-Spin Splitting

δ = 1.2 “anticipated” spectrum area = 9 TMS

δ = 6.4 δ = 4.4 area = 1 area = 1

10 9 8 7 6 5 4 3 2 1 0 δ

Br Br CH3 Br C C C CH3 H H CH3 Spin-Spin Splitting

δ = 1.2 observed spectrum area = 9 TMS

δ = 6.4 δ = 4.4 area = 1 area = 1

Hβ Hα

Hα Hβ

10 9 8 7 6 5 4 3 2 1 0 δ

Br Br CH3 Br C C C CH J is a constant 3 and independent Jcoupling constant = 1.5 Hz H H CH3 of field Spin-Spin Splitting

δ = 6.4 δ = 4.4 J = 1.5 Hz J = 1.5 Hz

Hβ Hα

Hα Hβ νlocal νlocal

νobserved νobserved

8 7 6 5 4 3 δ

νapplied νapplied

Br Br CH3

This spectrum is not recorded at ~6 MHz! Br C C C CH3 H H CH3 δ and J are not to scale. Multiplicity of Spin-Spin Splitting for s = ±1/2

multiplicity (m) = 2Σs + 1

# equiv. pattern spin (1/2) multiplicity symbol neighbors (a + b)n

0 0 1 1 singlet (s)

1 1/2 2 1:1 doublet (d)

2 2/2 = 1 3 1:2:1 triplet (t)

3 3/2 4 1:3:3:1 quartet (q)

4 4/2 = 1 5 1:4:6:4:1 quintet (qt) 1H NMR of Ethyl Bromide (90 MHz)

CH3CH2Br δ = 1.68 area = 3 for H spins ααβ αββ

αβα βαβ δ = 3.43 ααα βαα ββα βββ area = 2 1 3 3 1 90 Hz/46 pixels = 3J/12 pixels for H spins : J= 7.83 Hz αβ αα βα ββ 1 2 1 1H NMR of Isopropanol (90 MHz)

(CH3)2CHOH 1H septuplet; no coupling to OH

6H, d, J = 7.5 Hz

(4.25-3.80)x90/6 = 7.5 Hz

1H, s

δ4.25 δ3.80 Proton Exchange of Isopropanol (90 MHz)

(CH3)2CHOH + D2O (CH3)2CHOD Diastereotopic Protons: 2-Bromobutane

homotopic sets Br of protons H pro-R

H H

H H

H H

H R Diastereotopic protons H pro-S Diastereotopic Protons: 2-Bromobutane at 90MHz

Br

H

H H

H H

H H

H

H

δ1.03 (3H, t) δ1.70 (3H, d) δ1.82 (1H, m) δ1.84 (1H, m) δ4.09 (1H, m (sextet?)) 1H NMR of Propionaldehyde: 300 MHz

H

H H O

δ1.13 (3H, t, J = 7.3 Hz) H

H Is this pattern at 2.46 H δ a pentuplet given that there are two different δ9.79 (1H, t, J = 1.4 Hz) values for J?

No! 1H NMR of Propionaldehyde: 300 MHz

δ2.46 H

H 7.3 Hz 7.3 Hz 7.3 Hz H O

1.4 Hz

H

H 7.3 Hz H quartet of doublets 7.3 Hz

δ9.79 (1H, t, J = 1.4 Hz) δ1.13 (3H, t, J = 7.3 Hz) 1H NMR of Ethyl Vinyl Ether: 300 MHz

H 3H, t, J = 7.0 Hz J = 14.4 Hz

H J = 1.9 Hz

O H H

H J = 6.9 Hz

H H H

δ3.96 (1H, dd, J = 6.9, 1.9 Hz) 2H, q, J = 7.0 Hz δ4.17 (1H, dd, J = 14.4, 1.9 Hz)

δ6.46 (1H, dd, J = 14.4, 6.9 Hz) δ6.46 ABX Coupling in Ethyl Vinyl Ether

14.4

H 6.9

H

O H H

δ4.17 H

H H H 1.9 14.4

δ3.96 (1H, dd, J = 6.9, 1.9 Hz)

δ4.17 (1H, dd, J = 14.4, 1.9 Hz) δ3.96 6.9 δ6.46 (1H, dd, J = 14.4, 6.9 Hz) 1.9

Another example Dependence of J on the Dihedral Angle

The Karplus Equation 1H NMR (400 MHz): cis-4-t-Butylcyclohexanol

OH

He

He

He

Ha triplet of triplets

Ha

He 3.0 3.0

He Hδe 4.03, δ4.03, J( HJ(aH) a=) =3.0 3.0 Hz Hz J( HJ(H) =) =2.7 2.7 Hz Hz 2.7 2.7 e e

11.4 Hz

400 Hz 1H NMR (400 MHz): trans-4-t-Butylcyclohexanol

Ha

He OH H e triplet of triplets Ha

Ha

Ha Ha δ3.51, J(Ha) = 11.1 Hz 11.1 11.1 J(He) = 4.3 Hz 4.3 4.3

30.8 Hz X Y W Z Peak Shape as a Function of Δδ vs. J H H

J Δδ >> J Δδ

10 9 8 7 6 5 4 3 2 1 0 δ Δδ ~= J

10 9 8 7 6 5 4 3 2 1 0 δ

Δδ = 0

10 9 8 7 6 5 4 3 2 1 0 δ Magnetic Anisotropy

H H

H H

H H

Downfield shift for aromatic protons (δ 6.0-8.5) Bo Magnetic Anisotropy

R

C

C

H

Upfield shift for alkyne protons (δ 1.7-3.1) Bo 13C Nuclear Magnetic Resonance

13C Chemical Shifts Where’s Waldo? One carbon in 3 molecules of squalene is 13C

What are the odds that two 13C are bonded to one another?

~10,000 to 1 13C NMR Spectrum of Ethyl Bromide at 62.8 MHz

JCH = 151 Hz H H J = 3 Hz J = 126 Hz CH CH C1 H

Br C2 H H

J = 5 Hz TMS CH J = 118 Hz H CH

H

H

H

H H Si

H H H

H H

H

30 20 10 0

26.6 18.3 ppm (δ) 13C NMR Spectrum of Ethyl Bromide at 62.8 MHz

JCH = 151 Hz H H Off resonance decoupling J = 3 Hz of the 1H region removes J = 126 Hz CH CH C1 small C-H coupling. H

Br Broadband decoupling C2 removes all C-H coupling. H H

J = 5 Hz TMS CH J = 118 Hz H CH

H

H

H

H H Si

H H H

H H

H

30 20 10 0

26.6 18.3 ppm (δ) 13C Spectrum of Methyl Salicylate (Broadband Decoupled) 13C Spectrum of Methyl p-Hydroxybenzoate (Broadband Decoupled) The 13C Spectrum of Camphor

H H

H H

H H H

H H

H H H H H

O H H The End

F. E. Ziegler, 2004