From Dairy Biogas to R-CNG & Electric Vehicle Fuel

Total Page:16

File Type:pdf, Size:1020Kb

From Dairy Biogas to R-CNG & Electric Vehicle Fuel From Dairy Biogas to R-CNG & Electric Vehicle Fuel December 4, 2019 Energy Game Change 2019 California’s GHG Emissions California’s GHG Law and Dairies’ Role ▪ CA to reduce GHG* by 40% by 2030 - All GHG by 40% versus 1990 baseline - Dairy CH4 by 40% versus 2013 baseline ▪ Methane is a significant GHG source - 9% of total: 100year GWP** @ 25X - 22.4% of total: 20year GWP @ 72X ▪ Dairies: a primary source of CA CH4 - 55% of CA methane emissions - 26% of CA total from manure lagoon *Greenhouse Gases **Global Warming Potential Geo-Coded Dairy Data: 40% from 15% Dairy Digesters are Cost Effective* April 2016 Report * Based on 100 yr GWP Dairy Biogas -> Fuel Options R-CNG Fuel Electric Fuel 1. $75/MMBTU (Gas, LCFS, RIN) 1. $64/MMBTU (kWH, LCFS, RIN) 2. 90% less NOx Emissions 2. 90+% less NOx Emissions 3. LCFS & RIN Market Price Risk 3. LCFS Market Price Risk (Floor = BioMAT $25/MMBTU) August 2019 market prices for Gas, RIN and LCFS Dairy Biomethane LCFS Carbon Intensity * California Bioenergy LLC: California Dairy Digester Biogas to CNG GREET 2.0, LCFS FP: CNG056, CI: -276.24 Biogas to R-CNG Fuel with 1 2 3 4 5 6 7 Digester Biogas Treatment Biogas Biogas Product Interconnection Pipeline NGV Fueling Facilities Collection Conditioning & Gas (Point of Receipt) Extension Station or Lines Upgrading Compressor Other End-Use & Pipeline Remove Lateral CO2 and H20 Polish H2S & Compress Remove H2O Biogas Monitor & Oxygen for Meter Biogas Bulk H2S Removal Compress Biomethane One Cow = 125 DGE/Yr Double-lined Digesters Inflated digester with storage Biogas Gathering Line Construction Boring Under Hwy 5 CalBioGas™ Stations & Partner Progress CalBioGas™ biogas, biomethane, R-CNG and electric fuels Biogas to Electric Fuel with 15 A Dairy Fuel Cell Project Flow Chart RENEWABLE ENERGY CREDITS Retired Against Load for LCFS (12 Million RECs) EV CHARGING FACILITY 2MW BLOOM ENERGY SERVER MUNICIPALITY Dairy FUEL CELL RAW Manure BIOGAS ELECTRICITY Digester TO BARN (NEMA) BROWN POWER FOR SALE ELECTRICITY HYDROGEN (12 Million kWh) TO PG&E (WHOLESALE) SULFIDE REMOVAL Two Cows = One EV 16 Electric Growth – 5 Million in CA by 2030 CalBio Contact Information/Management N. Ross Buckenham (CEO) [email protected] Neil Black (President) [email protected] California Bioenergy 324 S. Santa Fe St., Suite B Visalia, CA 93292 (559) 667-9560 www.calbioenergy.com.
Recommended publications
  • Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, and REPOWERS
    What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Acknowledgments This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. This work was made possible through funding provided by National Clean Cities Program Director and DOE Vehicle Technologies Office Deployment Manager Dennis Smith. This publication is part of a series. For other lessons learned from the Clean Cities American Recovery and Reinvestment (ARRA) projects, please refer to the following publications: • American Recovery and Reinvestment Act – Clean Cities Project Awards (DOE/GO-102016-4855 - August 2016) • Designing a Successful Transportation Project – Lessons Learned from the Clean Cities American Recovery and Reinvestment Projects (DOE/GO-102017-4955 - September 2017) Authors Kay Kelly and John Gonzales, National Renewable Energy Laboratory Disclaimer This document is not intended for use as a “how to” guide for individuals or organizations performing a conversion, repower, or retrofit. Instead, it is intended to be used as a guide and resource document for informational purposes only. VEHICLE TECHNOLOGIES OFFICE | cleancities.energy.gov 2 ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Table of Contents Introduction ...............................................................................................................................................................5
    [Show full text]
  • Biogas Current Biofuels
    Current Biofuels - Biogas Keywords Bioenergy, biofuel, biogas, sustainable, renewable, biomass, anaerobic, waste, bacteria, microbes, fermentation, methane. Background Biofuel feedstocks that have high water content, such as food wastes and livestock manure cannot be easily incinerated, but can produce biogas. Biogas can be burnt to produce heat for cooking, warming homes and producing electricity. It can also be compressed and used as a transport fuel in specially © istockphoto® converted vehicle engines. The digested residue is of use as fertiliser in agriculture. Biogas storage containers Biogas is 60-80% methane and is created by a process termed anaerobic digestion, leaving behind a nutrient- rich substance termed digestate. Anaerobic digestion is carried out by a range of bacteria in the absence of oxygen. A number of bacteria and yeast have been identified in biogas production. Initially carbon dioxide is produced by the decomposing organic matter until an anaerobic environment is created. After the initial digestion a group of bacteria known as methanogens convert the products into methane and carbon dioxide. Anaerobic digestion has a number of environmental benefits including production of ‘green energy and natural fertilisers. The production of biogas can substitute feedstocks for fossil fuels and artificial fertilisers, reducing the amount of greenhouse gases released into the atmosphere. The problems associated with waste disposal are also alleviated by the generation of useful products and decreased release of the potent greenhouse gas, methane, from landfill sites Biogas is successfully generated in a number of developing countries and Europe. In the UK, research is being conducted in a number of areas of biogas production including: • Assessment of how more automated production can be achieved and scaled up to make it efficient and cost e fective.
    [Show full text]
  • Expanding the Use of Biogas with Fuel Cell Technologies
    Expanding the Use of Biogas with Fuel Cell Technologies Biogas with Fuel Cells Workshop Sunita Satyapal National Renewable Energy Laboratory U.S. Department of Energy Golden, Colorado Fuel Cell Technologies Program Program Manager 6/11/2012 1 eere.energy.gov U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Fuel Cells can apply to diverse Nuclear Industrial sectors Energy 9% Share of Energy Consumed Petroleum 37% by Major Sectors of the Economy, 2010 Residential & Commercial Coal 21% Residential 16% Transportation Natural Gas Electric Power 25% 29% Commercial 13% Transportation 20% Total U.S. Energy = 98 Quadrillion Btu/yr Industrial 22% Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 2 eere.energy.gov Fuel Cells – An Emerging Global Industry Fuel Cell Patents Geographic Source: Clean Distribution 2002-2011 Energy Patent Growth Index Japan 31% United States 46% Other 3% Clean Energy Patent Growth Index France 1% Korea Great Taiwan 7% Top 10 companies: GM, Honda, Samsung, Britain 1% 1% Toyota, UTC Power, Nissan, Ballard, Plug Canada Germany Power, Panasonic, Delphi Technologies 3% 7% Clean Energy Patent Growth Index[1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. • Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf 3 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits • up to 60% (electrical) Very High • up to 70% (electrical, hybrid fuel cell / Efficiency turbine) • up to 85% (with CHP) • 35–50%+ reductions for CHP systems Reduced (>80% with biogas) CO2 • 55–90% reductions for light-duty vehicles Emissions /Biogas • >95% reduction for FCEVs (vs.
    [Show full text]
  • Morgan Ellis Climate Policy Analyst and Clean Cities Coordinator DNREC [email protected] 302.739.9053
    CLEAN TRANSPORTATION IN DELAWARE WILMAPCO’S OUR TOWN CONFERENCE THE PRESENTATION 1) What are alterative fuels? 2) The Fuels 3) What’s Delaware Doing? WHAT ARE ALTERNATIVE FUELED VEHICLES? • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THERE’S A FUEL FOR EVERY FLEET! DELAWARE’S ALTERNATIVE FUELS • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THE FUELS PROPANE • By-Product of Natural Gas • Compressed at high pressure to liquefy • Domestic Fuel Source • Great for: • School Busses • Step Vans • Larger Vans • Mid-Sized Vehicles COMPRESSED NATURAL GAS (CNG) • Predominately Methane • Uses existing pipeline distribution system to deliver gas • Good for: • Heavy-Duty Trucks • Passenger cars • School Buses • Waste Management Trucks • DNREC trucks PROPANE AND CNG INFRASTRUCTURE • 8 Propane Autogas Stations • 1 CNG Station • Fleet and Public Access with accounts ELECTRIC VEHICLES • Electricity is considered an alternative fuel • Uses electricity from a power source and stores it in batteries • Two types: • Battery Electric • Plug-in Hybrid • Great for: • Passenger Vehicles EV INFRASTRUCTURE • 61 charging stations in Delaware • At 26 locations • 37,000 Charging Stations in the United States • Three types: • Level 1 • Level 2 • D.C. Fast Charging TYPES OF CHARGING STATIONS Charger Current Type Voltage (V) Charging Primary Use Time Level 1 Alternating 120 V 2 to 5 miles Current (AC) per hour of Residential charge Level 2 AC 240 V 10 to 20 miles Residential per hour of and charge Commercial DC Fast Direct Current 480 V 60 to 80 miles (DC) per 20 min.
    [Show full text]
  • WHY BIOGAS? Biogas Systems Protect Our Air, Water and Soil While Recycling Organic Material to Produce Renewable Energy and Soil Products
    WHY BIOGAS? Biogas systems protect our air, water and soil while recycling organic material to produce renewable energy and soil products. In cities, biogas systems recycle food scraps and wastewater sludge, reducing municipal costs and avoiding transport to disposal sites. In rural areas, biogas systems make agriculture more sustainable and create additional revenue streams for farmers. Since biogas systems prevent greenhouse gases, like methane, from entering the atmosphere, all biogas systems make our air cleaner to breathe and combat climate change, displacing fossil fuels. Biogas systems produce soil products that recycle nutrients, contributing to healthier soils 1211 Connecticut Avenue NW, Suite 650 and creating opportunities to eliminate nutrient runoff that pollutes our waterways. Waste management, renewable Washington, DC 20036-2701 energy and fuels, clean air, healthy soils and crystal clear waterways—you can get all of this when you build a new 202-640-6595 biogas system. [email protected] Use the interactive map at https://americanbiogascouncil.org/resources/biogas-projects/ Operational U.S. Biogas Systems The U.S. has over 2,200 sites producing biogas in all 50 states: 253 anaerobic digesters on farms, 1,269 water resource recovery facilities utilizing anaerobic 101 digesters, 68 stand-alone systems that digest food waste, and 652 landfill gas projects. For comparison, Europe has over Alaska 10,000 operating digesters, with some communities essentially fossil fuel free because of these systems. In 2018, investment in new biogas systems Puerto Rico totaled $1 billion. Over the last five years, total investment in the U.S. biogas industry has been growing at an annual rate of 12%.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries
    Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries September 2020 TABLE OF CONTENTS Executive Summary ....................................................................................................................................................................... 2 List of Abbreviations ...................................................................................................................................................................... 6 Preface .......................................................................................................................................................................................... 7 1 Introduction.......................................................................................................................................................................... 8 1.1 General ................................................................................................................................................................................. 8 1.2 Background ........................................................................................................................................................................... 8 2 Purpose and Scope of the Study ............................................................................................................................................ 9 2.1 Purpose of the Study ...........................................................................................................................................................
    [Show full text]
  • Understanding Long-Term Evolving Patterns of Shared Electric
    Experience: Understanding Long-Term Evolving Patterns of Shared Electric Vehicle Networks∗ Guang Wang Xiuyuan Chen Fan Zhang Rutgers University Rutgers University Shenzhen Institutes of Advanced [email protected] [email protected] Technology, CAS [email protected] Yang Wang Desheng Zhang University of Science and Rutgers University Technology of China [email protected] [email protected] ABSTRACT CCS CONCEPTS Due to the ever-growing concerns on the air pollution and • Networks → Network measurement; Mobile networks; energy security, many cities have started to update their Cyber-physical networks. taxi fleets with electric ones. Although environmentally friendly, the rapid promotion of electric taxis raises prob- KEYWORDS lems to both taxi drivers and governments, e.g., prolonged Electric vehicle; mobility pattern; charging pattern; evolving waiting/charging time, unbalanced utilization of charging experience; shared autonomous vehicle infrastructures and reduced taxi supply due to the long charg- ing time. In this paper, we make the first effort to understand ACM Reference Format: the long-term evolving patterns through a five-year study Guang Wang, Xiuyuan Chen, Fan Zhang, Yang Wang, and Desh- on one of the largest electric taxi networks in the world, i.e., eng Zhang. 2019. Experience: Understanding Long-Term Evolving the Shenzhen electric taxi network in China. In particular, Patterns of Shared Electric Vehicle Networks. In The 25th Annual we perform a comprehensive measurement investigation International Conference on Mobile Computing and Networking (Mo- called ePat to explore the evolving mobility and charging biCom ’19), October 21–25, 2019, Los Cabos, Mexico. ACM, New York, patterns of electric vehicles.
    [Show full text]
  • How Practical Are Alternative Fuel Vehicles?
    How Practical Are Alternative Fuel Vehicles? Many of us have likely considered an alternative fuel vehicle at some point in our lives. Balancing the positives and negatives is a tricky process and varies greatly based on our personal situations. However, many of the negatives that previously created hesitancy have changed in recent years. Below, we have outlined a few of the most commonly mentioned negatives regarding the two leading alternative fuel vehicle types: Flex Fuel vehicles and Electric/Hybrid vehicles. Then, you can decide for yourself whether one of these vehicle types are practical for you! Cost – How much does the vehicle cost to purchase and operate? Flex Fuel: Flex Fuel vehicles typically cost about the same as a gasoline vehicle.1 For fuel cost, E85 typically costs slightly less than gasoline, however, due to decreased efficiency has a slightly higher cost per mile than gasoline.2 Overall, a Flex Fuel vehicle is likely to be slightly more expensive than a gasoline counterpart. Electric/Hybrid: This situation varies quite a bit depending on where you live. Electric vehicles and hybrid vehicles often cost considerably more than a conventional gasoline vehicle. For example, a plug-in hybrid will cost around $4000-$8000 more than a conventional model.3 However, there are federal rebates and local rebates that can refund thousands of dollars from the purchase price. Electric/Hybrid vehicles also tend to save money on fuel, with the possibility of saving thousands of dollars over the lifetime of the vehicle.4 Whether these rebates and fuel cost savings will eventually account for the higher purchase price can be estimated with comparison tools.
    [Show full text]
  • Process Technologies and Projects for Biolpg
    energies Review Process Technologies and Projects for BioLPG Eric Johnson Atlantic Consulting, 8136 Gattikon, Switzerland; [email protected]; Tel.: +41-44-772-1079 Received: 8 December 2018; Accepted: 9 January 2019; Published: 15 January 2019 Abstract: Liquified petroleum gas (LPG)—currently consumed at some 300 million tonnes per year—consists of propane, butane, or a mixture of the two. Most of the world’s LPG is fossil, but recently, BioLPG has been commercialized as well. This paper reviews all possible synthesis routes to BioLPG: conventional chemical processes, biological processes, advanced chemical processes, and other. Processes are described, and projects are documented as of early 2018. The paper was compiled through an extensive literature review and a series of interviews with participants and stakeholders. Only one process is already commercial: hydrotreatment of bio-oils. Another, fermentation of sugars, has reached demonstration scale. The process with the largest potential for volume is gaseous conversion and synthesis of two feedstocks, cellulosics or organic wastes. In most cases, BioLPG is produced as a byproduct, i.e., a minor output of a multi-product process. BioLPG’s proportion of output varies according to detailed process design: for example, the advanced chemical processes can produce BioLPG at anywhere from 0–10% of output. All these processes and projects will be of interest to researchers, developers and LPG producers/marketers. Keywords: Liquified petroleum gas (LPG); BioLPG; biofuels; process technologies; alternative fuels 1. Introduction Liquified petroleum gas (LPG) is a major fuel for heating and transport, with a current global market of around 300 million tonnes per year.
    [Show full text]
  • EPRI Journal--Driving the Solution: the Plug-In Hybrid Vehicle
    DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna The Story in Brief As automakers gear up to satisfy a growing market for fuel-efficient hybrid electric vehicles, the next- generation hybrid is already cruis- ing city streets, and it can literally run on empty. The plug-in hybrid charges directly from the electricity grid, but unlike its electric vehicle brethren, it sports a liquid fuel tank for unlimited driving range. The technology is here, the electricity infrastructure is in place, and the plug-in hybrid offers a key to replacing foreign oil with domestic resources for energy indepen- dence, reduced CO2 emissions, and lower fuel costs. DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna n November 2005, the first few proto­ vide a variety of battery options tailored 2004, more than half of which came from Itype plug­in hybrid electric vehicles to specific applications—vehicles that can imports. (PHEVs) will roll onto the streets of New run 20, 30, or even more electric miles.” With growing global demand, particu­ York City, Kansas City, and Los Angeles Until recently, however, even those larly from China and India, the price of a to demonstrate plug­in hybrid technology automakers engaged in conventional barrel of oil is climbing at an unprece­ in varied environments. Like hybrid vehi­ hybrid technology have been reluctant to dented rate. The added cost and vulnera­ cles on the market today, the plug­in embrace the PHEV, despite growing rec­ bility of relying on a strategic energy hybrid uses battery power to supplement ognition of the vehicle’s potential.
    [Show full text]
  • Biogas As a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context
    sustainability Article Biogas as a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context Muhammad Arfan *, Zhao Wang, Shveta Soam and Ola Eriksson Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, SE-801 76 Gävle, Sweden; [email protected] (Z.W.); [email protected] (S.S.); [email protected] (O.E.) * Correspondence: [email protected]; Tel.: +46-704-400-593 Abstract: Biofuels policy instruments are important in the development and diffusion of biogas as a transport fuel in Sweden. Their effectiveness with links to geodemographic conditions has not been analysed systematically in studying biogas development in a less urbanised regions, with high po- tential and primitive gas infrastructure. One such region identified is Gävleborg in Sweden. By using value chain statistics, interviews with related actors, and studying biofuels policy instruments and implications for biogas development, it is found that the policy measures have not been as effective in the region as in the rest of Sweden due to different geodemographic characteristics of the region, which has resulted in impeded biogas development. In addition to factors found in previous studies, the less-developed biogas value chain in this region can be attributed particularly to undefined rules of the game, which is lack of consensus on trade-off of resources and services, unnecessary competition among several fuel alternatives, as well as the ambiguity of municipalities’ prioritization, and regional cultural differences. To strengthen the regional biogas sector, system actors need a strategy to eliminate blocking effects of identified local factors, and national policy instruments should provide mechanisms to process geographical conditions in regulatory, economic support, Citation: Arfan, M.; Wang, Z.; Soam, and market formation.
    [Show full text]