The Neural Causes of Congenital Amusia

Total Page:16

File Type:pdf, Size:1020Kb

The Neural Causes of Congenital Amusia The Journal of Neuroscience, July 27, 2016 • 36(30):7803–7804 • 7803 Journal Club Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml. The Neural Causes of Congenital Amusia X Jian Chen1 and Jie Yuan2 1School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010, Australia, and 2Department of Psychology and Department of Biomedical Engineering, Tsinghua University, 100084 Beijing, China Review of Norman-Haignere et al. Congenital amusia is a lifelong disorder in cortex (DLPFC) were lower in amusics areas. Considering amusics can exhibit a pitch processing and music perception that than in healthy controls. A third possi- normal priming effect of note expectancy affects ϳ4% of the population (Peretz et al., bility, however, is that individuals with (faster response to expected notes) based on 2002; Peretz and Hyde, 2003). Despite hav- congenital amusia have abnormal pitch the musical pitch context (Omigie et al., ing normal hearing and speech recognition, responsive region(s) in their auditory 2012) and that some amusics have deficits in as well as no prior brain lesions or cognitive cortex, despite the fact that the auditory music perception but not pitch discrimina- deficits, individuals with congenital amusia cortex seems to have normal responses tion (Tillmann et al., 2009; Liu et al., 2010), have difficulty recognizing melodies and de- to pitch changes (Hyde et al., 2011; it is plausible that congenital amusia results tecting pitch changes (Peretz et al., 2002; Moreauet al., 2013; but see Albouy et al., from deficits in frontotemporal connectiv- Tillmann et al., 2009; Liu et al., 2010). Their 2013; Zendel et al., 2015). Norman- ity or dysfunctions in the frontal cortex. “musical deafness” is thought to reflect un- Haignere et al. (2016) examined the third Recent neurological findings support derlying impairments in pitch perception possibility by investigating pitch-specific this argument. Studies on individuals and memory. However, the underlying activation in the auditory cortex. Amusic with congenital amusia have revealed re- neural causes of congenital amusia are still subjects and age- and education-matched duced white matter density in the right actively debated. controls passively listened to harmonic inferior frontal gyrus (Hyde et al., 2006), Previous studies have suggested three tones and frequency-matched noise dur- cortical malformations in the right infe- possible neural causes for congenital am- ing an fMRI scan. Results revealed that: rior frontal gyrus and right auditory usia. One is that congenital amusia is as- (1) amusics and controls both exhibited cortex (Hyde et al., 2007), and abnormal sociated with reduced frontotemporal stronger activation in pitch-responsive deactivation in the right inferior frontal connectivity, which makes it difficult for voxels to harmonic tones than to noise gyrus (Hyde et al., 2011). A more recent people with the disorder to consciously in a similar anatomical location. (2) No magnetoencephalography study has also access pitch information encoded in their difference was found in pitch-responsive reported decreased low-gamma oscilla- auditory cortex (Loui et al., 2009; Hyde et voxels activation between amusics and tions in the right DLPFC during pitch al., 2011; Albouy et al., 2013, 2015; but see controls. (3) The selectivity of pitch- memory task (Albouy et al., 2013). These Chen et al., 2015). Alternatively, the responsive voxels in the auditory cortex studies, however, are unable to distin- pitch-related deficits may be caused by showed no difference between amusics guish whether congenital amusia is the re- dysfunctions in the frontal cortex (Hyde and controls. sult of weak connectivity or if it is due to et al., 2006, 2011; Albouy et al., 2013). For In sum, Norman-Haignere et al. (2016) the deficits in the prefrontal cortex. example, Albouy et al. (2013) revealed that low gamma oscillations (30–40 Hz demonstrated that pitch-responsive regions A recent study by Schaal et al. (2015) range) in the right dorsolateral prefrontal in amusics’ auditory cortex are comparable supports the possibility that the neural in extent, selectivity, and anatomical loca- causes of congenital amusia are located in tion to those of controls. These results there- the frontal cortex. Based on previous find- Received May 9, 2016; revised June 15, 2016; accepted June 17, 2016. We thank Xuejing Lu and Lauren Power for effective discussion, and fore suggest that the congenital amusia is ings (Albouy et al., 2013), Schaal et al. Lauren Power and two editors for proofreading. unlikely caused by deficits in these regions, (2015) demonstrated that modulating the The authors declare no competing financial interests. and combined with other studies (Hyde et right DLPFC with transracial alternating CorrespondenceshouldbeaddressedtoJieYuan,WeiqingBuilding, al., 2011; Moreau et al., 2013; Zendel et al., current stimulation (tACS) at 35 Hz selec- Room 311, Tsinghua University, 100084 Beijing, China. E-mail: 2015), they suggest that amusics’ pitch- tively improved pitch memory, but not [email protected]. DOI:10.1523/JNEUROSCI.1500-16.2016 processing deficits are due to impairments visual memory, in amusics. Participants Copyright © 2016 the authors 0270-6474/16/367803-02$15.00/0 in regions outside of the pitch-responsive received either 35 or 90 Hz tACS during a 7804 • J. Neurosci., July 27, 2016 • 36(30):7803–7804 Chen and Yuan • Journal Club pitch short-term memory span task and O, Caclin A, Tillmann B (2013) Impaired genital amusia: evidence from event-re- visual short-term span task. Results sh- pitch perception and memory in congenital lated potentials. Brain Cogn 81:337–344. owed that 35 Hz tACS significantly im- amusia: the deficit starts in the auditory cor- CrossRef Medline tex. Brain 136:1639–1661. CrossRef Medline Norman-Haignere SV, Albouy P, Caclin A, Mc- proved the behavioral performance in Albouy P, Mattout J, Sanchez G, Tillmann B, Ca- Dermott JH, Kanwisher NG, Tillmann B pitch memory task in amusics to the ex- clin A (2015) Altered retrieval of melodic in- (2016) Pitch-responsive cortical regions in tent that there was no significant perfor- formation in congenital amusia: insights from congenital amusia. J Neurosci 36:2986–2994. mance difference between amusics and dynamic causal modeling of MEG data. Front CrossRef Medline controls. Such results suggest a causal re- Hum Neurosci 9:20. CrossRef Medline Omigie D, Pearce MT, Stewart L (2012) Track- lationship between congenital amusia and Chen JL, Kumar S, Williamson VJ, Scholz J, Grif- ing of pitch probabilities in congenital amusia. fiths TD, Stewart L (2015) Detection of the dysfunctions in the prefrontal cortex, es- Neuropsychologia 50:1483–1493. CrossRef arcuate fasciculus in congenital amusia de- Medline pecially the right DLPFC. pends on the tractography algorithm. Front Given that individuals with congenital Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Psychol 6:9. CrossRef Medline Penhune VB, Jutras B (2002) Congenital amusia have normal pitch-responsive Hyde KL, Zatorre RJ, Griffiths TD, Lerch JP, amusia: a disorder of fine-grained pitch dis- Peretz I (2006) Morphometry of the amusic regions in the auditory cortex and an crimination. Neuron 33:185–191. CrossRef brain: a two-site study. Brain 129:2562–2570. increase of activity in the DLPFC can Medline CrossRef Medline lead to performance facilitation in a Peretz I, Hyde KL (2003) What is specific to mu- Hyde KL, Lerch JP, Zatorre RJ, Griffiths TD, Ev- sic processing? Insights from congenital amu- pitch memory task (Schaal et al., 2015; ans AC, Peretz I (2007) Cortical thickness in sia. Trends in Cognitive Sciences 7:362–367. Norman-Haignere et al., 2016), we might congenital amusia: when less is better than conclude that the impairments in right more. J Neurosci 27:13028–13032. CrossRef CrossRef Medline DLPFC are the main causes of congenital Medline Schaal NK, Pfeifer J, Krause V, Pollok B (2015) Hyde KL, Zatorre RJ, Peretz I (2011) Functional From amusic to musical?: Improving pitch amusia. It is also possible, however, that memory in congenital amusia with transcra- the applied stimulation of 35 Hz tACS has MRI evidence of an abnormal neural network for pitch processing in congenital amusia. nial alternating current stimulation. Behav modulated the connectivity between the Cereb Cortex 21:292–299. CrossRef Medline Brain Res 294:141–148. CrossRef Medline right DLPFC and the auditory cortex Liu F, Patel AD, Fourcin A, Stewart L (2010) In- Tillmann B, Schulze K, Foxton JM (2009) Con- rather than the right DLPFC itself. Fur- tonation processing in congenital amusia: dis- genital amusia: a short-term memory deficit ther study is needed to rule out this crimination, identification and imitation. for non-verbal, but not verbal sounds. Brain possibility. Brain 133:1682–1693. CrossRef Medline Cogn 71:259–264. CrossRef Medline Loui P, Alsop D, Schlaug G (2009) Tone deaf- Zendel BR, Lagrois ME´ , Robitaille N, Peretz I ness: a new disconnection syndrome? J Neu- (2015) Attending to pitch information inhib- References rosci 29:10215–10220. CrossRef Medline its processing of pitch information: the curi- Albouy P, Mattout J, Bouet R, Maby E, Sanchez G, Moreau P, Jolicœur P, Peretz I (2013) Pitch ous case of amusia. J Neurosci 35:3815–3824. Aguera PE, Daligault S, Delpuech C, Bertrand discrimination without awareness in con- CrossRef Medline.
Recommended publications
  • Transposition, Hors-Série 2 | 2020, « Sound, Music and Violence » [Online], Online Since 15 March 2020, Connection on 13 May 2020
    Transposition Musique et Sciences Sociales Hors-série 2 | 2020 Sound, Music and Violence Son, musique et violence Luis Velasco-Pufleau (dir.) Electronic version URL: http://journals.openedition.org/transposition/3213 DOI: 10.4000/transposition.3213 ISSN: 2110-6134 Publisher CRAL - Centre de recherche sur les arts et le langage Electronic reference Luis Velasco-Pufleau (dir.), Transposition, Hors-série 2 | 2020, « Sound, Music and Violence » [Online], Online since 15 March 2020, connection on 13 May 2020. URL : http://journals.openedition.org/ transposition/3213 ; DOI : https://doi.org/10.4000/transposition.3213 This text was automatically generated on 13 May 2020. La revue Transposition est mise à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International. 1 TABLE OF CONTENTS Introduction Introduction. Son, musique et violence Luis Velasco-Pufleau Introduction. Sound, Music and Violence Luis Velasco-Pufleau Articles Affordance to Kill: Sound Agency and Auditory Experiences of a Norwegian Terrorist and American Soldiers in Iraq and Afghanistan Victor A. Stoichita Songs of War: The Voice of Bertran de Born Sarah Kay Making Home, Making Sense: Aural Experiences of Warsaw and East Galician Jews in Subterranean Shelters during the Holocaust Nikita Hock Interview and Commentaries De la musique à la lutte armée, de 1968 à Action directe : entretien avec Jean-Marc Rouillan Luis Velasco-Pufleau From Music to Armed Struggle, from 1968 to Action Directe: An Interview with Jean-Marc
    [Show full text]
  • Effects of Vocal Training in a Musicophile with Congenital Amusia
    Effects of vocal training in a musicophile with congenital amusia Jonathan M. P. Wilbiks, Dominique T. Vuvan, Pier-Yves Girard, Isabelle Peretz, and Frank A. Russo Volume 22, Issue 6, pp 526-537, Neurocase DOI: https://doi.org/10.1080/13554794.2016.1263339 Running head: Training in congenital amusia 1 Effects of vocal training in a musicophile with congenital amusia Jonathan M. P. Wilbiks 1, 2 Dominique T. Vuvan 3, 4 Pier-Yves Girard 4, 5 Isabelle Peretz 4, 5 Frank A. Russo 1 1 Ryerson University, Toronto, Canada 2 Mount Allison University, Sackville, Canada 3 Skidmore College, Saratoga Springs, USA 4 International Laboratory for Brain, Music and Sound Research (BRAMS) 5 Université de Montréal, Montreal, Canada Address : Department of Psychology, Ryerson University 350 Victoria Street Toronto, Ontario, M5B 2K3 Telephone : (001) 416-979-5000 x2647 Corresponding Author: Frank A. Russo ([email protected]) Running head: Training in congenital amusia 2 Abstract Congenital amusia is a condition in which an individual suffers from a deficit of musical pitch perception and production. Individuals suffering from congenital amusia generally tend to abstain from musical activities. Here we present the unique case of Tim Falconer, a self- described musicophile who also suffers from congenital amusia. We describe and assess Tim’s attempts to train himself out of amusia through a self-imposed 18-month program of formal vocal training and practice. We tested Tim with respect to music perception and vocal production across seven sessions including pre-training and post-training assessments. We also obtained diffusion-weighted images of his brain to assess connectivity between auditory and motor planning areas via the arcuate fasciculus.
    [Show full text]
  • Right Arcuate Fasciculus Abnormality in Chronic Fatigue Syndrome1
    Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. ORIGINAL R Right Arcuate Fasciculus ESEARCH Abnormality in Chronic Fatigue n Syndrome1 NEURORADIOLOGY Michael M. Zeineh, MD, PhD Purpose: To identify whether patients with chronic fatigue syndrome James Kang, MD (CFS) have differences in gross brain structure, micro- Scott W. Atlas, MD scopic structure, or brain perfusion that may explain their Mira M. Raman, MS symptoms. Allan L. Reiss, MD Jane L. Norris, PA Materials and Fifteen patients with CFS were identified by means of Ian Valencia, BS Methods: retrospective review with an institutional review board– Jose G. Montoya, MD approved waiver of consent and waiver of authorization. Fourteen age- and sex-matched control subjects provided informed consent in accordance with the institutional review board and HIPAA. All subjects underwent 3.0-T volumetric T1-weighted magnetic resonance (MR) imag- ing, with two diffusion-tensor imaging (DTI) acquisitions and arterial spin labeling (ASL). Open source software was used to segment supratentorial gray and white matter and cerebrospinal fluid to compare gray and white matter volumes and cortical thickness. DTI data were processed with automated fiber quantification, which was used to compare piecewise fractional anisotropy (FA) along 20 tracks. For the volumetric analysis, a regression was per- formed to account for differences in age, handedness, and total intracranial volume, and for the DTI, FA was com- pared piecewise along tracks by using an unpaired t test. The open source software segmentation was used to com- pare cerebral blood flow as measured with ASL.
    [Show full text]
  • Toward a New Comparative Musicology
    Analytical Approaches To World Music 2.2 (2013) 148-197 Toward a New Comparative Musicology Patrick E. Savage1 and Steven Brown2 1Department of Musicology, Tokyo University of the Arts 2Department of Psychology, Neuroscience & Behaviour, McMaster University We propose a return to the forgotten agenda of comparative musicology, one that is updated with the paradigms of modern evolutionary theory and scientific methodology. Ever since the field of comparative musicology became redefined as ethnomusicology in the mid-20th century, its original research agenda has been all but abandoned by musicologists, not least the overarching goal of cross-cultural musical comparison. We outline here five major themes that underlie the re-establishment of comparative musicology: (1) classification, (2) cultural evolution, (3) human history, (4) universals, and (5) biological evolution. Throughout the article, we clarify key ideological, methodological and terminological objections that have been levied against musical comparison. Ultimately, we argue for an inclusive, constructive, and multidisciplinary field that analyzes the world’s musical diversity, from the broadest of generalities to the most culture-specific particulars, with the aim of synthesizing the full range of theoretical perspectives and research methodologies available. Keywords: music, comparative musicology, ethnomusicology, classification, cultural evolution, human history, universals, biological evolution This is a single-spaced version of the article. The official version with page numbers 148-197 can be viewed at http://aawmjournal.com/articles/2013b/Savage_Brown_AAWM_Vol_2_2.pdf. omparative musicology is the academic comparative musicology and its modern-day discipline devoted to the comparative study successor, ethnomusicology, is too complex to of music. It looks at music (broadly defined) review here.
    [Show full text]
  • Affective Evaluation of Simultaneous Tone Combinations in Congenital Amusia
    Neuropsychologia 78 (2015) 207–220 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Affective evaluation of simultaneous tone combinations in congenital amusia Manuela M. Marin a,n, William Forde Thompson b, Bruno Gingras c, Lauren Stewart d,e,nn a Department of Basic Psychological Research and Research Methods, University of Vienna, Liebiggasse 5, A-1010 Vienna, Austria b Centre for Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia c Institute of Psychology, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria d Department of Psychology, Goldsmiths, University of London, New Cross, London, SE14 6NW, United Kingdom e Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark article info abstract Article history: Congenital amusia is a neurodevelopmental disorder characterized by impaired pitch processing. Al- Received 15 August 2014 though pitch simultaneities are among the fundamental building blocks of Western tonal music, affective Received in revised form responses to simultaneities such as isolated dyads varying in consonance/dissonance or chords varying in 27 September 2015 major/minor quality have rarely been studied in amusic individuals. Thirteen amusics and thirteen Accepted 2 October 2015 matched controls enculturated to Western tonal music provided pleasantness ratings of sine-tone dyads Available online 9 October 2015 and complex-tone dyads in piano timbre as well as perceived happiness/sadness ratings of sine-tone Keywords: triads and complex-tone triads in piano timbre. Acoustical analyses of roughness and harmonicity were Consonance conducted to determine whether similar acoustic information contributed to these evaluations in Emotion amusics and controls.
    [Show full text]
  • The Montreal Protocol for Identification of Amusia Dominique T. Vuvan
    The Montreal protocol for identification of amusia Dominique T. Vuvan, Sebastien Paquette, Geneviève Mignault-Goulet, Isabelle Royal, Mihaela Felezeu, and Isabelle Peretz Volume 50, Issue 2, pp 662-672, Behavior Research Methods DOI: https://doi.org/10.3758/s13428-017-0892-8 THE MONTREAL PROTOCOL FOR IDENTIFICATION OF AMUSIA 1 The Montreal Protocol for Identification of Amusia Vuvan, D.T. Skidmore College, Saratoga Springs, NY, United States and International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada Paquette, S. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States and International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada Mignault Goulet, G., Royal, I., Felezeu, M., & Peretz I. International Laboratory for Brain Music and Sound Research Center for Research on Brain, Language and Music Department of Psychology, University of Montreal, Montreal, QC, Canada Running title: The Montreal Protocol for Identification of Amusia Corresponding author: Dominique Vuvan Department of Psychology Skidmore College Saratoga Springs (NY) United States 12866 T: +1 518 316 6092 E: [email protected] W: //www.skidmore.edu/psychology/faculty/vuvan.php THE MONTREAL PROTOCOL FOR IDENTIFICATION OF AMUSIA 2 Abstract The Montreal Battery for the Evaluation of Amusia (MBEA; Peretz, Champod, & Hyde, 2003) is an empirically-grounded quantitative tool that is widely used to identify individuals with congenital amusia. The use of such a standardized measure ensures that individuals tested conform to a specific neuropsychological profile, allowing for comparisons across studies and research groups. Recently, a number of researchers have published credible critiques of the usefulness of the MBEA as a diagnostic tool for amusia.
    [Show full text]
  • Cortical Auditory Disorders: Clinical and Psychoacoustic Features
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.1.1 on 1 January 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:1-9 Cortical auditory disorders: clinical and psychoacoustic features MARIO F MENDEZ,* GEORGE R GEEHAN,Jr.t From the Department ofNeurology, Case Western Reserve University, Cleveland, Ohio,* and the Hearing and Speech Center, Rhode Island Hospitalt, Providence, Rhode Island, USA SUMMARY The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and match- ing, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Protected by copyright. Since the original description in the late nineteenth reports of auditory "agnosias" suggest that these are century, a variety ofdisorders has been reported from not genuine agnosias in the classic Teuber definition bilateral lesions of the auditory cortex and its radi- of an intact percept "stripped of its meaning".'3 14 ations. The clinical syndrome of cortical deafness in a Other studies indicate that pure word deafness and woman with bitemporal infarction was described by the auditory agnosias may be functionally related Wernicke and Friedlander in 1883.' The term audi- auditory perceptual disturbances.
    [Show full text]
  • The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification
    The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit To cite this version: Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit. The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.94. 10.3389/fnana.2018.00094. hal-01929504 HAL Id: hal-01929504 https://hal.archives-ouvertes.fr/hal-01929504 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 06 November 2018 doi: 10.3389/fnana.2018.00094 The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet 1* †, Silvio Sarubbo 2† and Laurent Petit 3* 1Department of Neurosurgery, Lariboisière Hospital, Paris, France, 2Division of Neurosurgery, Structural and Functional Connectivity Lab, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy, 3Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives—UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century.
    [Show full text]
  • Language & the Brain Broca's Aphasia Wernicke's Aphasia the ARCUATE FASCICULUS Bilinguals: a Neural Signature?
    10/8/2009 Language & The Brain Broca’s Aphasia Dr. Gardner: “Were you in the Broca’s Coast Guard?” Area Broca’s Area Mr. Ford (patient): “No, er, yes, yes … ship … Massachu … chusetts … Coastguard…years”. He held up his hand twice indicating 19. Gardner H. The Shattered Mind. New York: Vintage Books, 1974, pp 60-61 Posterior Speech 1. Language Comprehension (good) Areas Including Wernicke’s Area 2. Speech Production (impaired): • Nonfluent • Words improperly formed Posterior Speech Areas • Slow and slurred Including Wernicke’s • Paraphasic errors: “purnpike” Area (for turnpike) Wernicke’s Aphasia THE ARCUATE FASCICULUS Dr. Gardner: “What brings you to Broca’s the hospital?” I asked the 72- Area year-old retired butcher four weeks after his admission to the hospital. White Matter Tract that connects Broca’s Area and Mr. Gorgan (patient): Wernicke’s Area “Boy, I’m sweating, I’m awful nervous, you know, once in a while I get caught up, I can’t mention the tarripoi, a month agok, quite a Damage: Conduction Aphasia Posterior Speech little, I’ve done a lot well, I Areas Including impose a lot, while on the other 1. Language Comprehension: Wernicke’s Area hand, you know what I mean, I intact In 97% of people, both Broca's Area and have to run around, look it over, Wernicke's Area only on left hemisphere. 2. Fluent speech with some trebbin and all that sort of stuff. 1. Language Comprehension (poor) paraphasic errors Gardner H. The Shattered Mind. New York: Vintage Books, 3. Inability to repeat words 2. Speech fluent but nonsensical 1974, pp 67-68 3.
    [Show full text]
  • SMPC 2011 Attendees
    Society for Music Perception and Cognition August 11­14, 2011 Eastman School of Music of the University of Rochester Rochester, NY Welcome Dear SMPC 2011 attendees, It is my great pleasure to welcome you to the 2011 meeting of the Society for Music Perception and Cognition. It is a great honor for Eastman to host this important gathering of researchers and students, from all over North America and beyond. At Eastman, we take great pride in the importance that we accord to the research aspects of a musical education. We recognize that music perception/cognition is an increasingly important part of musical scholarship‐‐and it has become a priority for us, both at Eastman and at the University of Rochester as a whole. This is reflected, for example, in our stewardship of the ESM/UR/Cornell Music Cognition Symposium, in the development of several new courses devoted to aspects of music perception/cognition, in the allocation of space and resources for a music cognition lab, and in the research activities of numerous faculty and students. We are thrilled, also, that the new Eastman East Wing of the school was completed in time to serve as the SMPC 2011 conference site. We trust you will enjoy these exceptional facilities, and will take pleasure in the superb musical entertainment provided by Eastman students during your stay. Welcome to Rochester, welcome to Eastman, welcome to SMPC 2011‐‐we're delighted to have you here! Sincerely, Douglas Lowry Dean Eastman School of Music SMPC 2011 Program and abstracts, Page: 2 Acknowledgements Monetary
    [Show full text]
  • Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder
    brain sciences Review Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder Alma Y. Galvez-Contreras 1,* , David Zarate-Lopez 2,3 , Ana L. Torres-Chavez 2,3 and Oscar Gonzalez-Perez 2,* 1 Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, Mexico 2 Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico; [email protected] (D.Z.-L.); [email protected] (A.L.T.-C.) 3 Physiological Sciences PhD Program, School of Medicine, University of Colima, Colima 28040, Mexico * Correspondence: [email protected] (A.Y.G.-C.); [email protected] (O.G.-P.) Received: 9 November 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
    [Show full text]
  • Automatic Responses to Musical Intervals: Contrasts in Acoustic Roughness Predict
    Automatic Responses to Musical Intervals: Contrasts in Acoustic Roughness Predict Affective Priming in Western Listeners James Armitage, Imre Lahdelma, and Tuomas Eerola Department of Music, Durham University, Durham, DH1 3RL, UK (Dated: 30 March 2021) 1 1 ABSTRACT 2 The aim of the present study is to determine which acoustic components of harmonic con- 3 sonance and dissonance influence automatic responses in a simple cognitive task. In a series 4 of affective priming experiments, eight pairs of musical interval were used to measure the 5 influence of acoustic roughness and harmonicity on response times in a word-classification 6 task conducted online. Interval pairs that contrasted in roughness induced a greater degree 7 of affective priming than pairs that did not contrast in terms of their roughness. Contrasts 8 in harmonicity did not induce affective priming. A follow-up experiment used detuned in- 9 tervals to create higher levels of roughness contrasts. However, the detuning did not lead to 10 any further increase in the size of the priming effect. More detailed analysis suggests that 11 the presence of priming in intervals is binary: in the negative primes that create congru- 12 ency effects the intervals' fundamentals and overtones coincide within the same equivalent 13 rectangular bandwidth (i.e. the minor and major seconds). Intervals that fall outside this 14 equivalent rectangular bandwidth do not elicit priming effects, regardless of their disso- 15 nance or negative affect. The results are discussed in the context of recent developments in 16 consonance/dissonance research and vocal similarity. 2 17 I. INTRODUCTION 18 The contrast between consonance and dissonance is a vital feature of Western music.
    [Show full text]