Development and Horizontal Gene Transfer of Triclosan Resistance in Staphylococcus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brucella Genomics: Macro and Micro Evolution
International Journal of Molecular Sciences Review Brucella Genomics: Macro and Micro Evolution Marcela Suárez-Esquivel 1 , Esteban Chaves-Olarte 2, Edgardo Moreno 1 and Caterina Guzmán-Verri 1,2,* 1 Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] (M.S.-E.); [email protected] (E.M.) 2 Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 11 October 2020; Published: 20 October 2020 Abstract: Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens. Keywords: Brucella; brucellosis; genome reduction; pseudogene; IS711; SNPs 1. Introduction The Proteobacteria phylum represents the most extensive bacteria domain known. -
Comparative Genomics in Brucella Suis: from Intra-Specific and Inter-Specific Distinctive Features to Diagnostic Molecular Markers
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Comparative genomics in Brucella suis: from intra-specific and inter-specific distinctive features to diagnostic molecular markers Doutoramento em Biologia Especialidade de Microbiologia Ana Cristina Ribeiro Alves Ferreira Inácio Tese orientada por: Professor Doutor Rogério Paulo de Andrade Tenreiro Doutora Maria Inácia Aleixo Vacas de Carvalho Corrêa de Sá Documento especialmente elaborado para a obtenção do grau de doutor 2017 vii ii UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Comparative genomics in Brucella suis: from intra-specific and inter-specific distinctive features to diagnostic molecular markers Doutoramento em Biologia Especialidade de Microbiologia Ana Cristina Ribeiro Alves Ferreira Inácio Tese orientada por: Professor Doutor Rogério Paulo de Andrade Tenreiro Doutora Maria Inácia Aleixo Vacas de Carvalho Corrêa de Sá Júri: Presidente: ● Doutor José Manuel Gonçalves Barroso Vogais: ● Doutor João Paulo dos Santos Gomes ● Doutor Albano Gonçalo Beja-Pereira ● Doutora Maria Inácia Vacas de Carvalho Corrêa de Sá ● Doutora Lélia Mariana Marcão Chambel ● Doutor Ricardo Pedro Moreira Dias Documento especialmente elaborado para a obtenção do grau de doutor 2017 iii iv It is not the strongest of the species that survive, nor the most intelligent, but the one most adaptable to change. Wrongly attributed to Charles Darwin. Leon Megginson, 1964. v vi Acknowledgments First of all I would like to thank my supervisors, Professor Rogério Tenreiro and Doctor Maria Inácia Corrêa de Sá, for giving me the opportunity to work on this thesis, as well as for their friendly and good-humored mentoring, constant availability and guidance. I am very grateful for their support throughout my studies and doubts. -
Taxonomy of Brucella Menachem Banai*,1 and Michael Corbel2
The Open Veterinary Science Journal, 2010, 4, 85-101 85 Open Access Taxonomy of Brucella Menachem Banai*,1 and Michael Corbel2 1Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel 2Division of Bacteriology, National Institute for Biological Standards & Control, Potters Bar, EN6 3QG, UK Abstract: Brucellosis is named after Dr. David Bruce who first isolated the bacterium that caused Malta fever from four fatal cases amongst the British forces on the island. The genus Brucella was subsequently proposed after similar bacteria were isolated from cattle and swine and the zoonotic connection recognized. The close similarities between these isolates were acknowledged but nomen species were subsequently designated on the basis of their specific host preference, phage susceptibility and oxidative metabolism pattern with specific carbohydrate and amino acid substrates. The later isolation of B. suis strains of divergent host preference and of strains of low human pathogenicity, such as B. neotomae and B. ovis, has inspired a debate regarding Brucella taxonomy. On the one hand, the DNA homologies are strikingly similar, justifying inclusion of all members of the genus in a single species with sub-divisions. On the other hand, whole genome analyses such as MLVA, MLST, microarray studies, and SNP have confirmed subtle differences between the species. As a result, a return to a multi-nomen species taxonomy has recently been proposed and accepted by the Sub-committee on Taxonomy of Brucella. Phylogenetic studies have shown four clades in the genus that have possibly evolved from a Brucella – Ochrobactrum-like common soil ancestor. These are: B. melitensis-B. abortus; B.