Isolation and Characterization of Acetone-Insoluble Substances in Cellulose Acetate Prepared by an Acetic Acid Acetylation Process

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of Acetone-Insoluble Substances in Cellulose Acetate Prepared by an Acetic Acid Acetylation Process CELLULOSE CHEMISTRY AND TECHNOLOGY ISOLATION AND CHARACTERIZATION OF ACETONE-INSOLUBLE SUBSTANCES IN CELLULOSE ACETATE PREPARED BY AN ACETIC ACID ACETYLATION PROCESS X. L. CHEN, *,** S. W. XU,* W. J. PENG,* J. ZHANG * and Y. JIANG ** *Nantong Cellulose Fibers Co. Ltd, 27, East Zhongxiu Road, Nantong, Jiangsu, China ** College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China ✉Corresponding author: Xiaolu Chen, [email protected] Received March 25, 2013 Cellulose acetate fibers are commonly made by a dry-spinning process, in which cellulose acetate is firstly dissolved in acetone and then the cellulose acetate acetone solution is extruded through spinneret orifices that have extremely small diameters. Any insoluble substances in acetone solutions could cause disruptions in fiber extrusion, and are not tolerated. In this work, acetone-insoluble substances in cellulose acetates prepared from several kinds of pulps with varying cellulose content were isolated by ultracentrifugation, and characterized by using chemical, spectroscopic and chromatographic techniques. According to the results, acetone-insoluble substances are enriched in hemicellulose acetates, lower in the degree of substitution and higher in crystallinity in comparison with corresponding cellulose acetates. Based on analysis, a possible mechanism for the formation of insoluble substances is proposed. Hemicelluloses residues in pulps and insufficient acetylation of crystalline cellulose play important roles in forming the insoluble substances in cellulose acetate acetone solutions. Keywords : cellulose acetates, insoluble substances, formation mechanism INTRODUCTION Cellulose acetate (CA), one of the most the compositions and formation of insoluble commercially important cellulose derivatives, has substances in cellulose acetate solutions. been utilized in a wide variety of applications, Some literatures have reported researches on the such as coatings, fibers, optical films, filtration insoluble substances in cellulose acetate membranes, composites, laminates, and medical solutions.10-16 For example, Russo et al . prepared and pharmaceutical products.1-6 Among these cellulose acetate from lower purity wood pulps applications, cellulose acetate fibers are and characterized the soluble and insoluble commonly spun from acetone solutions in a so- fractions of cellulose acetate in acetone. Ueda et called “dry extrusion process”, in which cellulose al . characterized the acetone-insoluble substances acetate is firstly dissolved in acetone and then the in cellulose acetate and proposed a possible model cellulose acetate solution is extruded through of the gel in acetone, indicating that the gel is in spinneret orifices that have extremely small molecular aggregates of cellulose acetates with regions of cellulose diacetate and cellulose diameters and spun in hot air with resultant acetone vaporization and cellulose acetate triacetate I. Fleury et al . analyzed the solutions of coagulation. Any insoluble substances in polymer cellulose diacetate by size exclusion chroma- solutions would reduce the filterability, cause tography, and characterized the series of humps in disruptions in fiber extrusion and are not the chromatogram. In spite of their pioneering works, the exact nature of acetone-insoluble tolerated, and these industrial problems should be substances is not fully understood, and little even worse when some low-grade cellulose related literature has been published in recent resources are used to make cellulose acetate.7-9 years. Therefore, it seems quite important to investigate Cellulose Chem . Technol ., 48 (5-6), 477-483 (2014) X. L . CHEN et al . In this work, cellulose acetates were prepared 3.0% solution. The solution is then transferred into by an acetic acid acetylation/ripening process ultracentrifugation tubes and spun in a Sigma 3-18K from several different pulps with varying Sartorius high speed centrifuge at 10000 rpm for 2-3 o cellulose content. Acetone-insoluble substances in hours at 5 C to collect acetone-insoluble substances. the cellulose acetates were collected by The obtained insoluble substances are washed with acetone 3 times and dried at 60 oC for 24 hours prior to ultracentrifugation, and characterized by using characterization. chemical, spectroscopic and chromatographic techniques, such as titration method, ion Characterization chromatography (IC), nuclear magnetic resonance Solution properties (NMR), X-ray diffraction (XRD) etc. Based on Haze measurements of the cellulose acetate acetone analysis, influences of hemicelluloses and the solutions and the supernatant after centrifugation were degree of substitution (DS) on the formation of performed on a spectrophotometric colorimeter at acetone-insoluble substances are discussed, and a room temperature. In addition, the undissolved micro- possible mechanism for the formation of insoluble particles and their diameters in solution were analyzed substances is proposed in this article, which can with a HIAC/ROYCO 3000A (Mcount-200/MC-05) help us understand what the acetone-insoluble particle sizer. substances are, how they form and how to reduce Ion Chromatography them. This is beneficial to cope with the industrial The compositions of different sugars in pulps, problems in the spinning process and is cellulose acetates and the corresponding acetone- meaningful for enabling the use of low-grade insoluble substances were analyzed with Ion cellulose resources, such as bamboo fibers and Chromatography (DIONEX ICS-5000). Firstly, pulp agricultural by-products. samples were fluffed in a blender, cellulose acetates and acetone-insoluble substances samples were ground EXPERIMENTAL into powder, and dried overnight. Then a hydrolysis Materials process was carried out as follows: a sample prepared Cotton linter, Rayonier hardwood pulp, Borregaard above (0.355±0.005 g) was immersed in 3.0 ml 72% softwood pulp and paper pulp have been purchased sulfuric acid with periodical agitation in a 30 oC water commercially. Their main components are shown in bath for 2-3 hours, until the sample was dissolved. Table 1. Acetic anhydride, acetic acid, sulfuric acid, After the sample was removed from the water bath, and anhydrous magnesium acetate have been 84.0 ml of deionized water was added to the sample, purchased from Nanjing Chemical Reagent Co., Ltd. and then heated in an autoclave at 120 oC for 10 All above materials were used without purification. minutes. After the sample was cooled to room temperature, a 50% sodium hydroxide solution was Cellulose acetates preparation and insoluble added to neutralize the sulfuric acid, and then the substances isolation sample was filtered with a 0.45 micron ion Cellulose acetates have been prepared by an acetic chromatography filter. The filtrate was analyzed with a acid process with several different pulps, 18 cotton linter Dionex ICS 5000, using a CarboPac PA20 analytical (C-CA), Rayonier hardwood pulp (R-CA), Borregaard column. softwood pulp (B-CA) and paper pulp (P-CA). In this acetic acid process, a pulp (1 part) is firstly swelled in Degree of substitution acetic acid (0.4 parts) at room temperature, and then Degrees of substitution of cellulose acetates acetylated to cellulose triacetate with acetic anhydride prepared from several different pulps were determined (3 parts) in the presence of sulfuric acid (0.07-0.15 by a titration method. Firstly, a sample of 2 g dried parts) as catalysts at 40-55 oC for 1 hour. After powder was dissolved into 150 ml acetone with neutralization of sulfuric acid, a ripening is done with periodical agitation. Subsequently, 30 ml sodium the addition of water to make cellulose acetate with a hydroxide solution (1 mol/L) was added and the degree of substitution of approximately 2.4 in 2-3 resulting solution was kept at 25 oC for 30 minutes. hours. Then, the solution is poured into distilled water Then the solution was titrated with 0.5 mol/L sulfuric to precipitate the cellulose acetate. Finally, the acid solution with a small amount of phenolphthalein resulting cellulose acetate is washed thoroughly with as an indicator until the red color faded to obtain a distilled water and dried in a vacuum oven at 60 oC for volume of sulfuric acid (A). A blank experiment was about 24 hours. also tested to obtain the volume of sulfuric acid (B). To isolate insoluble substances, the obtained The mass of acetic acid and degree of substitution of cellulose acetate is dissolved in acetone to prepare a cellulose acetate were calculated from the following 478 Cellulose acetate equations: determined by 1H nuclear magnetic resonance spectra. Insoluble substances were first reacted with propionic AV=( B - A)× CH2 SO 4 × 0.06005 ×⁄ 100 W anhydride using pyridine as solvents for 24 hours in = ×⁄ −× DS162.14 AV( 6005 42 AV ) order to convert hydroxyl groups on the molecules of where AV is acetic acid content of cellulose acetates the insoluble substances to propionyl groups. 1H (%), A is the volume of sulfuric acid for cellulose nuclear magnetic resonance spectra were recorded of acetates (ml), B is the volume of sulfuric acid for blank the reaction product on a Varian Unity spectrometer in (ml), CH2SO 4 is the concentration of sulfuric acid chloroform-d at room temperature with (mol/L), W is the weight of sample in grams (g). tetramethylsilane as an internal standard. DS of acetone-insoluble substances were Table 1 Main components of four pulps Pulps Cotton linter Hardwood pulp Softwood pulp Paper α-Cellulose content ~98%
Recommended publications
  • Preparation and Physical Properties of the Biocomposite, Cellulose Diacetate/Kenaf Fiber Sized with Poly(Vinyl Alcohol)
    Macromolecular Research, Vol. 18, No. 6, pp 566-570 (2010) www.springer.com/13233 DOI 10.1007/s13233-010-0611-0 Preparation and Physical Properties of the Biocomposite, Cellulose Diacetate/Kenaf Fiber Sized with Poly(vinyl alcohol) Chang-Kyu Lee, Mi Suk Cho, In Hoi Kim, and Youngkwan Lee* Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea Jae Do Nam Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746, Korea Received November 2, 2009; Revised February 5, 2010; Accepted February 9, 2010 Abstract: Cellulose diacetate (CDA)/kenaf fiber biocomposites were prepared using a melting process. In order to increase the fiber density and compatibilize the kenaf fiber with CDA, the fiber was sized with poly(vinyl alco- hol)(PVA). The sized kenaf fiber was compounded with the plasticized CDA using a twin screw extruder, and the opti- mal processing conditions were determined. The incorporated kenaf fiber improved the mechanical and thermal properties of CDA. In the case of the composites containing 30 wt% kenaf fibers, the tensile strength and modulus increased almost 2 and 3 fold, which were 85.6 MPa and 4831 MPa, respectively. The PVA treated kenaf fiber showed better adhesion to the CDA matrix. Keywords: cellulose diacetate, kenaf fiber, PVA, sizing. Introduction CDA, its processability is improved, whereas its unique mechanical properties and thermal stability are deteriorated. Synthetic polymers are widely used in everyday life and In order to increase the physical strength of CDA, the use of are increasingly being used in more diverse areas due to various reinforcing agents were generally accepted.7-9 Natu- their easy processability, permanent stability, low price, and ral fiber is completely biodegraded in the natural environ- antibacterial properties.
    [Show full text]
  • Electrolytic Study of Basic Beryllium Acetate in Carbon Disulphide at 303K, 308K, 313K
    IARJSET ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 7, Issue 11, November 2020 DOI 10.17148/IARJSET.2020.71106 Electrolytic Study of Basic Beryllium Acetate in Carbon disulphide at 303K, 308K, 313K Rajeev Kumar Sharma1, Renu Singhal2 Assistant Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)1 Associate Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)2 Abstract: The electrolytic study of Basic Beryllium Acetate (B.B.A.) in carbon disulphide were reported at 303K, 308K, 313K, the solute solvent interaction have been carried out by computing various Physico-chemical Acoustic Parameters [Apparent Molal adiabatic compressibility (k), Isentropic compressibility (S), Intermolecular free length (Lf), Specific Acoustic Impedance (Z), Relative Association and Solvation Number (Sn)], these parameters have been evaluated by using ultrasonic velocity, density, viscosity data. The results of these parameters indicates the strength of molecular interaction. Keywords: Molecular Interaction, Electrolytic, viscous behavior of Basic Beryllium acetate. I. INTRODUCTION The Isentropic compressibility of dilute aqueous solution of electrolytes decreases with increasing conc. indicating a strong interaction of the dissolved ion with the alkanols1-7, the non-aqueous solution of electrolytes have drawn the attention of same workers.7-9 Now, we are reporting a study of Ultrasound velocity, density and viscosity measurement at 300C, 350C, 400C have 8 been used to calculate isentropic compressibility (s), Intermolecular Free Lenght (Lf) , Specific Acoustic Impedance 9 10 (Z) , Molar sound velocity (R), Relative association (RA) , Apparent molal adiabatic compressibility (k), Wada 11 0 0 constant (B), Shear’s relaxation time (s) and Solvation numbers (Sn) of B.B.A.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • A New Take on the Aspirin Synthesis Lab: a Multi-Step Organic Synthesis Laboratory for High School Students
    A new take on the aspirin synthesis lab: A multi-step organic synthesis laboratory for high school students Michael P. Kowalski Rationale The use of the extracts of various plants for the treatment of pain and fever goes back several centuries. A tea made from the leaves or bark of Willow ( Saliaceae ) was found to be especially effective. By the late 19th Century, the active ingredient in these plant extracts, salicylic acid, had been identified. In 1874, the process for the commercial production of salicylic acid was perfected. The use of salicylic acid as an analgesic became widespread. However, side effects, such as gastric bleeding, made long term use of the drug impossible for many patients. In 1895, Felix Hoffman of the Fredrick Bayer Company found a method to acetylate salicylic acid, producing acetyl salicylic acid. This derivative was found to be as effective as salicylic acid as an analgesic but did not have the side effects associated with salicylic acid. The new drug was named “aspirin”, a name inspired by Saint Aspirinius, the patron saint of headaches. The introduction of aspirin marks the beginning of the modern pharmaceutical industry. The mechanism as to how aspirin alleviates pain was not elucidated until the 1970’s, when it was found that aspirin inhibits COX 1 and COX 2, enzymes that catalyze the formation of prostaglandins, substances that cause inflammation (1). The synthesis of aspirin, acetylsalicylic acid, is a standard first year organic chemistry laboratory activity at the college level. In most protocols, salicylic acid is reacted with acetic anhydride producing aspirin and acetic acid by acid catalysis: O OH O O OH O O H2SO4 O CH3 + H3C OH OH H C O CH + 3 3 O The reaction is refluxed for 30 minutes, and then cooled.
    [Show full text]
  • Aspirin. an Ab Initio Quantum-Mechanical Study of Conformational Preferences and of Neighboring Group Interactions
    J. Org. Chem. 2001, 66, 771-779 771 Aspirin. An ab Initio Quantum-Mechanical Study of Conformational Preferences and of Neighboring Group Interactions Rainer Glaser Department of Chemistry, University of MissourisColumbia, Columbia, Missouri 65211 [email protected] Received August 15, 2000 The potential energy surface of acetylsalicylic acid, aspirin, has been explored at the RHF/6-31G* and B3LYP/6-31G* levels, and single-point calculations were performed at levels up to B3LYP/ 6-311G**//B3LYP/6-31G*. All conformational isomers have been located, the thermochemical functions have been computed, and relative energies and free enthalpies were determined. The conformational space of aspirin is spanned by three internal coordinates, and these are the carboxylic acid C-O conformation (s-trans preferred by about 7 kcal/mol), the C-COOH conformation (Z preferred unless there are H-bonding opportunities), and the ester C-O conformation (s-trans preferred by about 4 kcal/mol). There are nine aspirin isomers since one of the conformers realizes hydrogen-bonding structure isomerism as well. Neighboring group interactions are discussed with reference to the intrinsic properties of benzoic acid and phenyl acetate. The intrinsic conformational preference energies for benzoic acid and phenyl acetate are not additive. The acid s-trans preference energies differ by as much as 9 kcal/mol depending on the Ph-COOH and ester conformations. Similarly, the E-preference energies about the Ph-COOH bond vary by as much as 6 kcal/mol depending on the ester conformation. The structural discussion suggests an overall ortho repulsion between the functional groups in all aspirin isomers including the intramolecularly hydrogen- bonded isomers.
    [Show full text]
  • Production of Cellulosic Polymers from Agricultural Wastes
    ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry http://www.e-journals.net Vol. 5, No. 1, pp. 81-85, January 2008 Production of Cellulosic Polymers from Agricultural Wastes A.U. ISRAEL, I.B. OBOT *, S. A. UMOREN, V. MKPENIE and J.E. ASUQUO Department of Chemistry,Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Nigeria. [email protected] Received 12 May 2007; Accepted 10 July 2007 Abstract: Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm ( Elais guineensis ), raffia, piassava, bamboo pulp, bamboo bark from raphia palm ( Raphia hookeri ), stem and cob of maize plant (Zea mays ), fruit fiber from coconut fruit ( Cocos nucifera ), sawdusts from cotton tree ( Cossypium hirsutum ), pear wood ( Manilkara obovata ), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase ( Saccharium officinarum ) and plantain stem (Musa paradisiaca). They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H 2SO 4 to obtain cellulose derivatives (Cellulose diacetate and triacetate). The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70.
    [Show full text]
  • Benefits of APTA: Case of Cambodia
    03_Study on APTA benefits for Cambodia_August 2009.doc DRAFT Benefits of APTA: Case of Cambodia BY RAJAN SUDESH RATNA1 PROFESSOR CENTRE FOR WTO STUDIES INDIAN INSTITUTE OF FOREIGN TRADE NEW DELHI [email protected] [email protected] 1 The views expressed by author are purely personal and does not reflect the views of the Institute where he is currently working. 1 03_Study on APTA benefits for Cambodia_August 2009.doc DRAFT Benefits of joining APTA: Case of Cambodia Introduction The Asia-Pacific Trade Agreement (APTA), previously known as the Bangkok Agreement (BA), was signed in 1975. It is the oldest preferential trade agreement between developing countries in the Asia-Pacific region that aims at promoting economic development through a continuous process of trade expansion and furthering international economic cooperation through the adoption of mutually beneficial trade liberalization measures. Current members include Bangladesh, China, India, Lao PDR, Republic of Korea and Sri Lanka. ESCAP Secretariat provides secretarial support to APTA. The text of the agreement was revised during the Third Round of negotiations and the list of items on which tariff concessions were exchanged expanded to more than 4,000 items. The Members also adopted common rules of origin with minimum local value content requirement of 45 per cent f.o.b. (35 per cent for LDCs) for availing the tariff concessions. The rules are simple and easy to operate. APTA allows any developing member country of UNESCAP to become a member. This agreement links three major economies of Asia namely China, India & Republic of Korea and thus provides preferential market access to one of the largest market in the world.
    [Show full text]
  • Sodium Acetate
    SODIUM ACETATE Prepared at the 18th JECFA (1974), published in NMRS 54B (1975) and in FNP 52 (1992). Metals and arsenic specifications revised at the 59th JECFA (2002). An ADI not limited' was established at the 17th JECFA (1973) SYNONYMS INS No. 262(i) DEFINITION Chemical names Sodium acetate C.A.S. number 127-09-3 Chemical formula C2H3NaO2 · nH2O (n = 0 or 3) Structural formula CH3COONa · nH2O (n = 0 or 3) Formula weight Anhydrous: 82.03 Trihydrate: 136.08 Assay Not less than 98.5% after drying DESCRIPTION Anhydrous: White, odourless, granular, hygroscopic powder Trihydrate: Colourless, transparent crystals or a granular crystalline powder, odourless or with a faint, acetic odour. Effloresces in warm, dry air. FUNCTIONAL USES Buffer CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Very soluble in water; soluble in ethanol pH (Vol. 4) 8.0 - 9.5 (1 in 100 soln) Test for sodium (Vol. 4) Passes test Test for acetate (Vol. 4) Passes test Heat test Anhydrous: When heating the sample slowly, it first fuses gradually and boils, and later decomposes evolving an unpleasant odour of acetone. A solution of the residue gives alkaline reaction with litmus paper. Trihydrate: When heating the sample slowly, it liquefies. Then water evaporates, and a powder forms. By heating more strongly, the powder fuses, and becomes lumpy and later decomposes evolving an odour of acetone. A solution of the residue gives alkaline reaction with litmus paper. PURITY Loss on drying (Vol. 4) Anhydrous: Not more than 2.0% (120o, 4 h) Trihydrate: Between 36 and 42% (120o, 4 h) Test for potassium Negative test (Vol.
    [Show full text]
  • Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation
    membranes Article Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation Ayesha Raza 1,*, Sarah Farrukh 1, Arshad Hussain 1, Imranullah Khan 1, Mohd Hafiz Dzarfan Othman 2 and Muhammad Ahsan 1 1 Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] (S.F.); [email protected] (A.H.); [email protected] (I.K.); [email protected] (M.A.) 2 Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, University of Technology Malaysia, Skudai 81310, Malaysia; hafi[email protected] * Correspondence: [email protected] Abstract: The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas- separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical Citation: Raza, A.; Farrukh, S.; and green nature. The best position in Robeson’s upper bound curve at 5 bar was obtained with Hussain, A.; Khan, I.; Othman, M.H.D.; Ahsan, M. Performance the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability Analysis of Blended Membranes of of 17.32 barrer and CO2/CH4 selectivity of 18.55.
    [Show full text]
  • Vinyl Acetate
    Vinyl acetate 108-05-4 Hazard Summary Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to vinyl acetate has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of vinyl acetate in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified vinyl acetate for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on inhalation chronic toxicity of vinyl acetate and the RfC, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Vinyl Acetate. (1) Uses Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol.(1) Vinyl acetate is also used as a raw material in the production of other chemicals, in adhesives, water-based paints, nonwoven textile fibers, textile sizings and finishes, paper coatings, inks, films, and lacquers. (1,2) Sources and Potential Exposure Exposure is most likely to occur in the workplace, where individuals may be occupationally exposed to vinyl acetate via inhalation or dermal contact during its manufacture or use.
    [Show full text]
  • Sodium Acetate As an Alkalinizing Agent for Salicylate Intoxication
    linica f C l To o x l ic a o n r l o u g o y J Groke, et al., J Clin Toxicol 2015, 5:2 Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000237 ISSN: 2161-0495 Case Report Open Access Sodium Acetate as an Alkalinizing Agent for Salicylate Intoxication: A Case Report Steven F Groke*, Daniel H Jarrell, Christopher J Edwards, Peter B Chase, Mark J Murphy and Frank G Walter Deapartment of Emergency Medicine, University of Arizona, Tucson, AZ, USA *Correspondence author: Steven F Groke, Deapartment of Emergency Medicine, University of Arizona Tucson, AZ, USA, Tel: 801-718-8919 E-mail: [email protected] Received date: Feb 16, 2015; Accepted date: Mar 18, 2015; Published date: Mar 21, 2015 Copyright: © 2015 Groke FS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Urine and serum alkalization with sodium bicarbonate (NaHCO3) is the initial treatment for salicylate toxicity. Due to medication shortages, sufficient quantities of NaHCO3 may not be available and alternative treatments may be needed. Case Report: This is an observational case report of a man who presented with chronic, inadvertent aspirin intoxication. Initially, we used a NaHCO3 continuous intravenous (IV) infusion until the hospital ran out of NaHCO3. Thereafter, the NaHCO3 IV infusion was replaced with a sodium acetate (SA) continuous IV infusion. “Why should an emergency physician be aware of this?” Sodium acetate’s role in serum and urine alkalization for drug intoxications is not well understood.
    [Show full text]