Protein Tyrosine Phosphatase-PEST (PTP-PEST) Mediates Hypoxia

Total Page:16

File Type:pdf, Size:1020Kb

Protein Tyrosine Phosphatase-PEST (PTP-PEST) Mediates Hypoxia bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Protein tyrosine phosphatase-PEST (PTP-PEST) mediates hypoxia- 2 induced endothelial autophagy and angiogenesis through AMPK 3 activation. 4 Shivam Chandel1, Amrutha Manikandan1, Nikunj Mehta1, Abel Arul Nathan1, Rakesh 5 Kumar Tiwari1, Samar Bhallabha Mohapatra1, Mahesh Chandran2, Abdul Jaleel2, 6 Narayanan Manoj1 and Madhulika Dixit1. 7 8 1. Department of Biotechnology, 9 Bhupat and Jyoti Mehta School of Biosciences, 10 Indian Institute of Technology Madras (IIT Madras), 11 Chennai, INDIA, 600036 12 2. Rajiv Gandhi Centre for Biotechnology (RGCB), 13 Thyacaud Post, Thiruvananthpuram, 14 Kerala, INDIA, 695014 15 16 Corresponding Author: 17 Madhulika Dixit 18 Department of Biotechnology, 19 Bhupat and Jyoti Mehta School of Biosciences, 20 Indian Institute of Technology Madras 21 Chennai, INDIA, 600036 22 23 Phone: +91-44-22574131 24 E-mail: [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 Abstract: 27 Global and endothelial loss of PTP-PEST is associated with impaired cardiovascular 28 development and embryonic lethality. Although hypoxia is implicated in vascular 29 morphogenesis and remodelling, its effect on PTP-PEST remains unexplored. Here we 30 report that hypoxia (1% oxygen)increases protein levels and catalytic activity of PTP- 31 PEST in primary endothelial cells. Immunoprecipitation followed by mass spectrometry 32 (LC/MS/MS) revealed that AMP-activated protein kinase alpha subunits (AMPK α1 and 33 α2) interact with PTP-PEST under normoxia but not in hypoxia. Co-immunoprecipitation 34 experiments confirmed this observation and determined that AMPK α subunits interact 35 with the catalytic domain of PTP-PEST. Knock-down of PTP-PEST abrogated hypoxia 36 mediated tyrosine dephosphorylation and activation of AMPK (Thr172 phosphorylation). 37 Absence of PTP-PEST also blocked hypoxia-induced autophagy (measured as LC3 38 degradation and puncta formation) which was rescued by AMPK activator, metformin 39 (500µM). Since endothelial autophagy is a pre-requisite for angiogenesis, knock-down 40 of PTP-PEST also attenuated endothelial cell migration and capillary tube formation 41 with autophagy inducer rapamycin (200nM) rescuing these effects. In conclusion, this 42 work identifies for the first time PTP-PEST as a regulator of hypoxia-induced AMPK 43 activation and endothelial autophagy to promote angiogenesis. 44 45 46 Key words: PTP-PEST, hypoxia, AMPK, autophagy, angiogenesis 47 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 48 Introduction: 49 Physiological hypoxia is a potent agonist for embryonic development and post-natal 50 angiogenesis. Oxygen concentrations ranging from 1% to 5% are observed in the 51 uterine environment between embryonic days 3.5 to 14.5 (E3.5-E14.5) to facilitate 52 development of placenta. Similarly, in response to hypoxia (<2% oxygen), endocardial 53 and vascular endothelial cells mediate formation of foetal heart and vasculature 54 respectively in mice between embryonic days E7.5 to E15 [1;2]. Post-natal 55 angiogenesis as seen in female reproductive tract during menstrual cycle in humans, as 56 well as formation of collateral circulation to over-come coronary artery blocks also 57 depend on hypoxia-induced endothelial signalling. Other than the known classical 58 mediators of angiogenesis, multiple studies in rodents have reported increased activity 59 of cytosolic protein tyrosine phosphatases (PTPs) at the sites of post-natal 60 angiogenesis, including ischemic myocardium and skeletal muscles [3;4]. An increase 61 in the cytosolic PTP activity during hypoxia is also seen in the cerebral cortex of new 62 born piglets [5]. Paradoxically, others have shown that non-selective PTP inhibitor, 63 sodium orthovanadate, enhances VEGFR2 signalling and capillary morphogenesis 64 [3;6]. Although these studies allude to the involvement of different PTPs in hypoxia- 65 induced angiogenic signalling, barring the involvement of few, for instance VE-PTP (a 66 receptor PTP), the identity of hypoxia responsive cytosolic angiogenic PTPs remains 67 largely unknown. 68 69 Human genome encodes 38 classical PTPs which are specific for tyrosine residues [7]. 70 Among these, PTP-PEST is a ubiquitously expressed cytosolic PTP with an N-terminal 71 catalytic domain (1-300 amino acids) and a regulatory C-terminal PEST domain (301- 72 780 amino acids) containing four PEST motifs. The latter plays a crucial role in protein- 73 protein interaction allowing the enzyme to interact with its known substrates such as 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 74 Cas, Paxillin, FAK and Pyk2 in addition to being a protein degradation signal [8-10]. 75 The catalytic domain harbours the conserved phosphatase ‘HC(X)5R’ motif surrounded 76 by the ‘WPD loop’ and the ‘Q loop’ on one side to assist in catalysis and by the ‘P-Tyr- 77 loop’on the other side to regulate substrate recognition and specificity [11]. Both global 78 and endothelial deficiency of PTP-PEST in mice leads to embryonic lethality between 79 E9.5-E10.5 days due to defective heart formation and impaired endothelial network in 80 the yolk sac [12;13]. It is worth noting that this stage in embryonic development 81 coincides with hypoxia-induced morphogenesis [1;2]. PTP-PEST appears to be crucial 82 for vascular development even in humans since a partial deletion of PTP-PEST is 83 associated with disrupted aortic arch development [14]. Intriguingly, in a recent study, 84 enhanced endothelial expression of PTP-PST was indeed observed in the vascularized 85 core of glioblastoma tumours with others demonstrating involvement of PTP-PEST in 86 integrin mediated endothelial cell adhesion and migration [13;15]. Based on these 87 observations which illustrate an essential role of PTP-PEST in vascular development 88 and given the fact that hypoxia is indispensable for cardiovascular development and 89 angiogenesis, in the present study we set out to determine the functional role of PTP- 90 PEST in hypoxia-induced endothelial responses. We assessed the effect of hypoxia on 91 the expression, activity and binding partners of PTP-PEST in primary human umbilical 92 vein derived endothelial cells (HUVECs). 93 94 Materials and methods: 95 Experimental procedure involving isolation of endothelial cells from umbilical cords was 96 approved by the IIT-Madras Institutional Ethics Committeeas per the Indian Council of 97 Medical Research (ICMR), Government of India guidelines. These guidelines are in 98 accordance with the declaration of Helsinki, which was revised in 2000. 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 99 Antibodies and Chemicals: Tissue culture grade plastic ware was from Tarsons 100 Products Pvt. Ltd., Kolkata, India. Antibodies against HIF-1α, phospho-AMPK, total 101 AMPK, LC3, phospho-ULK1, total ULK1, phospho-ACC, total ACC, PTP-PEST (AG10) 102 and anti-phospho-tyrosine (P-Tyr-102) antibody were obtained from Cell Signaling 103 Technology (CST), Boston, MA, USA. Dulbecco’s modified Eagle’s medium (DMEM) 104 and MCDB131 were purchased from HiMediaTM, Mumbai, India and fetal bovine serum 105 (FBS) was from Gibco, Thermo Fisher Scientific, Waltham, MA, USA. Unless specified 106 otherwise rest of the molecular biology and biochemistry reagents were from Sigma, St. 107 Louis, MO, USA. 108 Cell culture: HUVECs were isolated from freshly collected umbilical cords by 109 collagenase digestion. They were cultured in fibronectin coated T25 flasks until 110 monolayer was formed. MCDB131 medium with endothelial growth supplements was 111 used for culturing HUVECs. All the experiments were performed in passage one. For 112 cell lines HEK293, HeLa, Huh7 and HASMC, cells were cultured in DMEM with 10% 113 FBS. For hypoxia exposure, cells were incubated in hypoxia incubator (5% CO2, 1% O2 114 and 95% relative humidity) for specified duration. After degassing, the cell culture 115 media used for hypoxia experiments was pre-equilibrated to the hypoxic environment 116 prior to start of the experiment. 117 Immunoblotting: All the buffers used for washing and lysing of cells were degassed 118 before use. Cells were washed with 1X cold PBS and lysed in buffer containing 50mM 119 Tris-HCl (pH 7.5), 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% TritonX-100, 0.1% SDS, 120 1% sodium deoxycholate, 1mM PMSF and protease inhibitor cocktail from Sigma (St. 121 Louis, MO, USA) followed by sonication for 1 min (30% amplitude, 3 second on/off 122 cycle). 50 µg worth total protein was resolved through 8% SDS-PAGE and transferred 123 onto PVDF membrane. Blotted proteins were incubated with corresponding primary 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.152942; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 124 antibodies at 4°C overnight followed by incubation with horseradish peroxidase 125 conjugated secondary antibodies (Jackson ImmunoResearch, West Grove, PA, USA).
Recommended publications
  • The Role of PI3P Phosphatases in the Regulation of Autophagy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 1313–1318 journal homepage: www.FEBSLetters.org Review The role of PI3P phosphatases in the regulation of autophagy Isabelle Vergne a,*, Vojo Deretic a,b a Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA b Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA article info abstract Article history: Autophagy initiation is strictly dependent on phosphatidylinositol 3-phosphate (PI3P) synthesis. Received 31 December 2009 PI3P production is under tight control of PI3Kinase, hVps34, in complex with Beclin-1. Mammalian Revised 15 February 2010 cells express several PI3P phosphatases that belong to the myotubularin family. Even though some Accepted 16 February 2010 of them have been linked to serious human diseases, their cellular function is largely unknown. Two Available online 24 February 2010 recent studies indicate that PI3P metabolism involved in autophagy initiation is further regulated by Edited by Noboru Mizushima the PI3P phosphatases Jumpy and MTMR3. Additional pools of PI3P, upstream of mTOR and on the endocytic pathway, may modulate autophagy indirectly, suggesting that other PI3P phosphatases might be involved in this process. This review sums up our knowledge on PI3P phosphatases and Keywords: Autophagy discusses the recent progress on their role in autophagy. Myotubularin Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. PI3P Phosphatase Jumpy MTMR14 1. Introduction PI3P phosphatases were one of the likely candidates as it is known that the phosphoinositide, PI3,4,5P3 and its signaling can be down- PI3P synthesis has long been recognized as one of the key regulated by PI3,4,5P3 phosphatase, PTEN.
    [Show full text]
  • Myotubularin-Related Protein (MTMR) 9 Determines the Enzymatic Activity, Substrate Specificity, and Role in Autophagy of MTMR8
    Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8 Jun Zoua,1, Chunfen Zhangb,1,2, Jasna Marjanovicc, Marina V. Kisselevab, Philip W. Majerusb,d,2, and Monita P. Wilsonb,2 aDepartment of Pathology and Immunology, bDivision of Hematology, Department of Internal Medicine, and dDepartment of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110; and cDivision of Basic and Pharmaceutical Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110 Contributed by Philip W. Majerus, May 1, 2012 (sent for review February 24, 2012) The myotubularins are a large family of inositol polyphosphate myotubularin proteins (16–21). One mechanism that regulates 3-phosphatases that, despite having common substrates, subsume the myotubularins is the formation of heterodimers between unique functions in cells that are disparate. The myotubularin catalytically active and inactive proteins. The interaction between family consists of 16 different proteins, 9 members of which different myotubularin proteins has a significant effect on en- possess catalytic activity, dephosphorylating phosphatidylinositol zymatic activity. For example, the association of myotubularin 3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphos- (MTM1) with MTMR12 results in a threefold increase in the 3- phate [PtdIns(3,5)P2] at the D-3 position. Seven members are in- phosphatase activity of MTM1, alters the subcellular localiza- active because they lack the conserved cysteine residue in the tion of MTM1 from the plasma membrane to the cytosol, and CX5R motif required for activity. We studied a subfamily of homol- attenuates the filopodia formation seen with MTM1 overex- ogous myotubularins, including myotubularin-related protein 6 pression (21, 22).
    [Show full text]
  • Phosphatidylinositol-5-Phosphate Activation and Conserved Substrate Specificity of the Myotubularin Phosphatidylinositol 3-Phosphatases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 13, 504–509, March 18, 2003, 2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0960-9822(03)00132-5 Phosphatidylinositol-5-Phosphate Activation and Conserved Substrate Specificity of the Myotubularin Phosphatidylinositol 3-Phosphatases 1 2 Julia Schaletzky, Stephen K. Dove, displayed activity toward PtdIns3P and PtdIns(3,5)P2, Benjamin Short,1 Oscar Lorenzo,3 but not the other naturally occurring phosphoinositides 3 1 Michael J. Clague, and Francis A. Barr (Figure 1A). The activity toward PtdIns(3,5)P2 adds a 1Department of Cell Biology novel substrate specificity for MTM1 [6] and is consis- Max-Planck-Institute of Biochemistry tent with reports that MTMR2 and MTMR3 use PtdIns3P Am Klopferspitz 18a and PtdIns(3,5)P2 as substrates [10, 11]. Purified MTMR6 Martinsried, 82152 showed the same substrate specificity as MTM1 (Figure Germany 1C), while the active site mutant protein MTMR6C336S 2 School of Biosciences lacked any detectable activity toward either PtdIns3P University of Birmingham or PtdIns(3,5)P2. To confirm that MTM1 hydrolyses The Medical School PtdIns(3,5)P2, we performed an alternate analysis of activ- Birmingham B15 2TT ity described previously for MTMR3 [10]. This assay is 3 Physiological Laboratory carried out in living yeast cells and is useful for establishing University of Liverpool 3-phosphatase activity against PtdIns(3,5)P2, since it Crown Street allows detection of the reaction product PtdIns5P, which Liverpool L69 3BX is not normally detectable in yeast [10, 12, 13].
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Supplementary Materials
    Supplementary Suppl. Figure 1: MAPK signalling pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 2: Cell cycle pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC- 5. Suppl. Figure 3: Cancer pathways of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 4: Phosphorylation level of A: ARAF, B: EPHA1, C: EPHA2, D: EPHA7 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 5: Phosphorylation Level of A: KIT, B: PTPN11, C: PIK3R1, D: PTPN6 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 6: Phosphorylation Level of A: KDR, B: EFS, C: AKT1, D: PTK2B/FAK2 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 7: Scoreplots and volcanoplots of PTK upstream kinase analysis: A: Scoreplot of PTK- Upstream kinase analysis for NCI-H2052 cells. B: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2052 cells. C: Scoreplot of PTK-Upstream kinase analysis for NCI-H2452 cells. D: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2452 cells. E: Scoreplot of PTK-Upstream kinase analysis for MSTO-211H cells. F: Volcanoplot of PTK-Upstream kinase analysis for MSTO- 211H cells. G: Scoreplot of PTK-Upstream kinase analysis for MRC-5cells. H: Volcanoplot of PTK- Upstream kinase analysis for MRC-5 cells. Suppl. Figure 8: Scoreplots and volcanoplots of STK upstream kinase analysis: A: Scoreplot of STK- Upstream kinase analysis for NCI-H2052 cells.
    [Show full text]
  • Molecular and Genetic Medicine
    Bertazzi et al., J Mol Genet Med 2015, 8:2 Molecular and Genetic Medicine http://dx.doi.org/10.4172/1747-0862.1000116 Review Article Open Access Myotubularin MTM1 Involved in Centronuclear Myopathy and its Roles in Human and Yeast Cells Dimitri L. Bertazzi#, Johan-Owen De Craene# and Sylvie Friant* Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, France #Authors contributed equally to this work. *Corresponding author: Friant S, Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, 67084 Strasbourg, France, E-mail: [email protected] Received date: April 17, 2014; Accepted date: July 21, 2014; Published date: July 28, 2014 Copyright: © 2014 Bertazzi DL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsible for the X-linked centronuclear myopathy (XLCNM) or X-linked myotubular myopathy (XLMTM). The MTM1 gene was first identified in 1996 and its function as a PtdIns3P and PtdIns(,5)P2 phosphatase was discovered in 2000. In recent years, very important progress has been made to set up good models to study MTM1 and the XLCNM disease such as knockout or knockin mice, the Labrador Retriever dog, the zebrafish and the yeast Saccharomyces cerevisiae. These helped to better understand the cellular function of MTM1 and of its four conserved domains: PH-GRAM (Pleckstrin Homology-Glucosyltransferase, Rab-like GTPase Activator and Myotubularin), RID (Rac1-Induced recruitment Domain), PTP/DSP (Protein Tyrosine Phosphatase/Dual-Specificity Phosphatase) and SID (SET-protein Interaction Domain).
    [Show full text]
  • The Expression Patterns and the Prognostic Roles of PTPN Family Members in Digestive Tract Cancers
    Preprint: Please note that this article has not completed peer review. The expression patterns and the prognostic roles of PTPN family members in digestive tract cancers CURRENT STATUS: UNDER REVIEW Jing Chen The First Affiliated Hospital of China Medical University Xu Zhao Liaoning Vocational College of Medicine Yuan Yuan The First Affiliated Hospital of China Medical University Jing-jing Jing The First Affiliated Hospital of China Medical University [email protected] Author ORCiD: https://orcid.org/0000-0002-9807-8089 DOI: 10.21203/rs.3.rs-19689/v1 SUBJECT AREAS Cancer Biology KEYWORDS PTPN family members, digestive tract cancers, expression, prognosis, clinical features 1 Abstract Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members and the prognosis of digestive tract cancers. Method Expression profiling of PTPN family genes in digestive tract cancers were analyzed through ONCOMINE and UALCAN. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal couple with Cytoscape. Data from The Cancer Genome Atlas (TCGA) were downloaded for validation and to explore the relationship of the PTPN expression with clinicopathological parameters and survival of digestive tract cancers. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. For esophageal carcinoma (ESCA), expression of PTPN1, PTPN4 and PTPN12 were upregulated; expression of PTPN20 was associated with poor prognosis.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • High Expression of MAPK-14 Promoting the Death of Chondrocytes Is an Important Signal of Osteoarthritis Process
    High expression of MAPK-14 promoting the death of chondrocytes is an important signal of osteoarthritis process Zhiqin Deng1,*, Xiaotian Hu1,2,*, Murad Alahdal1, Jianquan Liu1, Zhe Zhao1, Xiaoqiang Chen1, Junxiong Xie1, Li Duan1, Daping Wang1,2 and Wencui Li1 1 Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China 2 Anhui Medical University, Hefei, China * These authors contributed equally to this work. ABSTRACT Background. Osteoarthritis (OA) is one of the most common degenerative diseases worldwide. Many researchers are studying the pathogenesis of OA, however, it is still unclear. Methods. Screening and validation of OA relevant hub genes are an important part of exploring their potential molecular mechanism. Therefore, this study aims to explore and verify the mechanisms of hub genes in the OA by bioinformatics, qPCR, fluorescence and propidium iodide staining. Results. Microarray datasets GSE43923, GSE55457 and GSE12021 were collected in the Gene Expression Omnibus (GEO), including 45 samples, which divided into 23 osteoarthritis knee joint samples and 22 samples of normal knee joint. Thereafter, 265 differentiallyexpressedgenes (DEGs) were identified in all, which divided into 199 upregulated genes and 66 downregulated genes. The hub genes MAPK-14, PTPRC, PTPN12 were upregulated, while B9D1 was downregulated. In order to further Submitted 19 June 2020 confirm the expression of screening differential genes in human chondrocytes, the Accepted 7 December 2020 human chondrocytes were extracted from a joint replacement surgery and stained Published 15 January 2021 with toluidine blue for identification. Compared with normal chondrocytes, OA Corresponding authors chondrocytes had high expression of COL I protein and low expression of COL II Daping Wang, protein.
    [Show full text]
  • Phosphatome Rnai Screen Identifies Eya1 As a Positive Regulator of Hedgehog Signal Transduction
    Phosphatome RNAi Screen Identifies Eya1 as a Positive Regulator of Hedgehog Signal Transduction The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Eisner, Adriana. 2013. Phosphatome RNAi Screen Identifies Eya1 as a Positive Regulator of Hedgehog Signal Transduction. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181213 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phosphatome RNAi Screen Identifies Eya1 as a Positive Regulator of Hedgehog Signal Transduction A dissertation presented by Adriana Eisner to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Neurobiology Harvard University Cambridge, Massachusetts June 2013 © 2013 Adriana Eisner All rights reserved. Dissertation Advisor: Dr. Rosalind Segal Adriana Eisner Phosphatome RNAi Screen Identifies Eya1 as a Positive Regulator of Hedgehog Signal Transduction Abstract The Hedgehog (Hh) signaling pathway is vital for vertebrate embryogenesis and aberrant activation of the pathway can cause tumorigenesis in humans. In this study, we used a phosphatome RNAi screen for regulators of Hh signaling to identify a member of the Eyes Absent protein family, Eya1, as a positive regulator of Hh signal transduction. Eya1 is both a phosphatase and transcriptional regulator. Eya family members have been implicated in tumor biology, and Eya1 is highly expressed in a particular subtype of medulloblastoma (MB).
    [Show full text]
  • Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke
    Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 ABSTRACT Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 Copyright by Dahlia Doughty Shenton 2009 Abstract The dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]