The Chemotherapy of Lymphomas: Looking Back, Moving Forward—The Richard and Hinda Rosenthal Foundation Award Lecture1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects
International Journal of Molecular Sciences Review PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects Rosalin Mishra , Hima Patel, Samar Alanazi , Mary Kate Kilroy and Joan T. Garrett * Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; [email protected] (R.M.); [email protected] (H.P.); [email protected] (S.A.); [email protected] (M.K.K.) * Correspondence: [email protected]; Tel.: +1-513-558-0741; Fax: +1-513-558-4372 Abstract: The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted. Keywords: cancer; PIK3CA; resistance; PI3K inhibitors Citation: Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. -
The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2
[CANCER RESEARCH 45, 6541-6545, December 1985] Meeting Report The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2 This workshop was convened to address the question of how of a specific tumor cannot be predicted with any certainty. Virus- best to use animal models of solid tumors in cancer therapy induced rodent tumors almost always express common virus- research. The discussion among the 58 participants focused on coded antigens and are usually strongly immunogenic, but hosts the following topics: appropriate solid tumor models; xenografts neonatally infected with virus may be immunologically tolerant to of human tumors; assay systems such as local tumor control, virus-coded antigens. Chemically induced rodent tumors tend to clonogenic assays following tumor excision, and tumor regrowth express individually distinct antigens. Depending partially upon delay; and applications of such models in chemotherapy, radio the carcinogen and the target organ, the degree of immunoge therapy, and combined modalities studies. nicity is variable, but a large proportion of chemically induced A major goal of the meeting was to produce a set of guiding tumors are immunogenic. Spontaneous rodent tumors are usu principles for experiments on animal tumors. This report is largely ally nonimmunogenic, although a minority may be weakly to a statement of those guiding principles, with suggestions and moderately immunogenic (1, 2). comments concerning investigations using animal models in Because no tumor can be expected to be nonimmunogenic if cancer therapy research.3 The authors believe that this discus it is placed in an allogeneic environment, tumors should as a sion of "tricks of the trade" will be useful to research workers general rule only be transplanted syngeneically. -
THE STRUCTURED STORAGE of ONCOLOGICAL CHEMOTERAPEUTIC REGIMENS Contribution to Standardization of Therapeutic Procedures in Current Oncology
THE STRUCTURED STORAGE OF ONCOLOGICAL CHEMOTERAPEUTIC REGIMENS Contribution to Standardization of Therapeutic Procedures in Current Oncology D. Klimes1, L. Dusek1, M. Kubasek1, J. Novotny2, J. Finek3 and R. Vyzula4 1 Institute of Biostatistics and Analyzes, Masaryk University, Kamenice 126/3, Brno, Czech Republik 2 Department of Oncology, General Teaching Hospital, Prague, Czech Republic 3 Charles University Prague, Medical Faculty Pilsen, Pilsen, Czech Republic 4 Masaryk Memorial Cancer Institute, Brno, Czech Republic Keywords: Cancer Chemotherapy Protocols, Antineoplastic Combined Chemotherapy Regimens, XML, Clinical Database. Abstract: The aim of the chemotherapeutic regimens (CHR) digitalization project is the proposal of a universal structure and creation of a publicly accessible database of contemporary CHR as a universal utility for the communication and evaluation of contemporary and newly defined clinical schedules in anti-tumor chemotherapy. After analysis of contemporary anti tumor CHR a standard XML structure was proposed, which enables the recording of simple CHR from the field of chemotherapy in solid adult tumors, and also has the potential of recording the complex treatment protocols in the field of paediatric oncology. The resulting XML documents were saved on a web server. A publicly accessible CHR database was constructed. There were a total of 130 XML documents with definitions of individual CHR in the first phase. Linked to this data store, three examples of web applications were added to demonstrate the potential uses of this newly created database. 1 INTRODUCTION clinical studies and are published in the oncological journals (Goldberg et al., 2004) (Henderson et al., Chemotherapy, along with surgery and radiotherapy 2003) (Citron et al., 2003) and subsequently in is an irreplaceable part of the clinical treatment of national or international guidelines (NCCN, 2006) oncological illnesses across nearly all diagnoses. -
Radiotherapy: Seizing the Opportunity in Cancer Care
RADIOTHERAPY: seizing the opportunity in cancer care November 2018 Foreword The incidence of cancer is increasing, resulting in a rising demand for high‑quality cancer care. In 2018, there were close to 4.23 million new cases of cancer in Europe, and this number is predicted to rise by almost a quarter to 5.2 million by 2040.1 This growing demand poses a major challenge to healthcare systems and highlights the need to ensure all cancer patients have access to high-quality, efficient cancer care. One critical component of cancer care is too often forgotten in these discussions: radiotherapy. Radiotherapy is recommended as part of treatment for more than 50% of cancer patients.2 3 However, at least one in four people needing radiotherapy does not receive it.3 This report aims to demonstrate the significant role of radiotherapy in achieving high‑quality cancer care and highlights what needs to be done to close the current gap in utilisation of radiotherapy across Europe. We call on all stakeholders, with policymakers at the helm, to help position radiotherapy appropriately within cancer policies and models of care – for the benefit of cancer patients today and tomorrow. 2 1 Governments and policymakers: Make radiotherapy a central component of cancer care in policies, planning and budgets Our 5 2 Patient groups, media five-point Professional societies working and other stakeholders: Help with national and EU‑level improve general awareness and plan decision‑makers: Achieve understanding of radiotherapy recognition of all radiotherapy to -
The Future of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION
The Future Of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute The President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair (through 12/31/11) Charles R. Drew Professor of Surgery Howard University College of Medicine Washington, DC 20059 Margaret L. Kripke, Ph.D. (through 12/31/11) Vivian L. Smith Chair and This report is submitted to the President of the United States Professor Emerita in fulfillment of the obligations of the President’s Cancer Panel The University of Texas to appraise the National Cancer Program as established in MD Anderson Cancer Center accordance with the National Cancer Act of 1971 (P.L. 92-218), Houston, TX 77030 the Health Research Extension Act of 1987 (P.L. 99-158), the National Institutes of Health Revitalization Act of 1993 (P.L. 103-43), and Title V, Part A, Public Health Service Act (42 U.S.C. 281 et seq.). Printed November 2012 For further information on the President’s Cancer Panel or additional copies of this report, please contact: Abby B. Sandler, Ph.D. Executive Secretary President’s Cancer Panel 9000 Rockville Pike Bld. 31/Rm B2B37 MSC 2590 Bethesda, MD 20892 301-451-9399 [email protected] http://pcp.cancer.gov The Future Of Cancer Research:: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 Suzanne H. Reuben Erin L. Milliken Lisa J. Paradis for The President’s Cancer Panel November 2012 U.S. -
Cancer Treatment and Survivorship Facts & Figures 2019-2021
Cancer Treatment & Survivorship Facts & Figures 2019-2021 Estimated Numbers of Cancer Survivors by State as of January 1, 2019 WA 386,540 NH MT VT 84,080 ME ND 95,540 59,970 38,430 34,360 OR MN 213,620 300,980 MA ID 434,230 77,860 SD WI NY 42,810 313,370 1,105,550 WY MI 33,310 RI 570,760 67,900 IA PA NE CT 243,410 NV 185,720 771,120 108,500 OH 132,950 NJ 543,190 UT IL IN 581,350 115,840 651,810 296,940 DE 55,460 CA CO WV 225,470 1,888,480 KS 117,070 VA MO MD 275,420 151,950 408,060 300,200 KY 254,780 DC 18,750 NC TN 470,120 AZ OK 326,530 NM 207,260 AR 392,530 111,620 SC 143,320 280,890 GA AL MS 446,900 135,260 244,320 TX 1,140,170 LA 232,100 AK 36,550 FL 1,482,090 US 16,920,370 HI 84,960 States estimates do not sum to US total due to rounding. Source: Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Contents Introduction 1 Long-term Survivorship 24 Who Are Cancer Survivors? 1 Quality of Life 24 How Many People Have a History of Cancer? 2 Financial Hardship among Cancer Survivors 26 Cancer Treatment and Common Side Effects 4 Regaining and Improving Health through Healthy Behaviors 26 Cancer Survival and Access to Care 5 Concerns of Caregivers and Families 28 Selected Cancers 6 The Future of Cancer Survivorship in Breast (Female) 6 the United States 28 Cancers in Children and Adolescents 9 The American Cancer Society 30 Colon and Rectum 10 How the American Cancer Society Saves Lives 30 Leukemia and Lymphoma 12 Research 34 Lung and Bronchus 15 Advocacy 34 Melanoma of the Skin 16 Prostate 16 Sources of Statistics 36 Testis 17 References 37 Thyroid 19 Acknowledgments 45 Urinary Bladder 19 Uterine Corpus 21 Navigating the Cancer Experience: Treatment and Supportive Care 22 Making Decisions about Cancer Care 22 Cancer Rehabilitation 22 Psychosocial Care 23 Palliative Care 23 Transitioning to Long-term Survivorship 23 This publication attempts to summarize current scientific information about Global Headquarters: American Cancer Society Inc. -
CANCE R RESEARCH Experimental Brain Tumors
CANCE R RESEARCH A MONTHLY JOURNAL OF ARTICLES AND ABSTRACTS REPORTING CANCER RESEARCH VOLUME 1 DECEMBER, 1941 NUMBER 12 Experimental Brain Tumors I. Tumors Produced with Methylcholanthrene* H. M. Zimmerman, M.D., and Hildegarde Arnold, M.D. (Frorn the Laboratory o/Pathology, Yale University School o/ Medicine, New Haven, Conn.) (Received for publication October 9, I941) Efforts to produce intracranial neoplasia by various of 4 in pyrex glass jars having wire mesh covers. The chemical carcinogens have been attended with scant jars were sterilized weekly. Each group of animals was success prior to the work of Seligman and Shear (2). inspected at least twice daily for evidences of tumor By intracerebral implantation of pellets of 2o-methyl- development. cholanthrene, these workers produced ii gliomas and The diet consisted of Purina Fox Chow and oats. 2 fibrosarcomas in a series of 2o male mice of the C3H This and tap water were available to the animals at all strain. Seligman and Shear reported also successful times ad libitum. subcutaneous transplantation of several of these tumors, Carcinogen.--The carcinogen employed for intra- one of which was stated to be a glioma. cranial implantation was 2o-methylcholanthrene (Hoff- Utilizing the same technic, the present writers re- man-LaRoche, Inc., Nutley, N. J.) which was purified ported a preliminary experiment (3) in which they by chromatographic adsorption on A120:~.1 The speci- found u6 intracranial tumors in 51 C3H mice. These men used had a corrected melting point of i79.8- tumors, occurring during the first io months of the I8o.4 ~ C. Cylindrical pellets of this hydrocarbon were experiment, consisted of oligodendroglioma, glioblas- prepared with a diameter of about I mm. -
Monoclonal Antibody Therapeutics and Apoptosis
Oncogene (2003) 22, 9097–9106 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Monoclonal antibody therapeutics and apoptosis Dale L Ludwig*,1, Daniel S Pereira1, Zhenping Zhu1, Daniel J Hicklin1 and Peter Bohlen1 1ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA The potential for disease-specific targeting and low including the generation of human antibody phage toxicity profiles have made monoclonal antibodies attrac- display libraries, human immunoglobulin-producing tive therapeutic drug candidates. Antibody-mediated transgenic mice, and directed affinity maturation meth- target cell killing is frequently associated with immune odologies, have further improved on the efficiency, effector mechanisms such as antibody-directed cellular specificity, and reactivity of monoclonal antibodies for cytotoxicity, but they can also be induced by apoptotic their target antigens (Schier et al., 1996; Mendez et al., processes. Antibody-directed mechanisms, including anti- 1997; de Haard et al., 1999; Hoogenboom and Chames, gen crosslinking, activation of death receptors, and 2000; Knappik et al., 2000). As a result, the isolation of blockade of ligand-receptor growth or survival pathways, high-affinity fully human monoclonal antibodies is now can elicit the induction of apoptosis in targeted cells. commonplace. Owing to their inherent specificity for a Depending on their mechanism of action, monoclonal particular target antigen, monoclonal antibodies pro- antibodies can induce targeted cell-specific killing alone or mise precise selectivity for target cells, avoiding non- can enhance target cell susceptibility to chemo- or reacting normal cells. radiotherapeutics by effecting the modulation of anti- To be effective as therapeutics for cancer, antibodies apoptotic pathways. -
CD20-Negative Diffuse Large B-Cell Lymphomas: Biology and Emerging Therapeutic Options
Expert Review of Hematology ISSN: 1747-4086 (Print) 1747-4094 (Online) Journal homepage: http://www.tandfonline.com/loi/ierr20 CD20-negative diffuse large B-cell lymphomas: biology and emerging therapeutic options Jorge J Castillo, Julio C Chavez, Francisco J Hernandez-Ilizaliturri & Santiago Montes-Moreno To cite this article: Jorge J Castillo, Julio C Chavez, Francisco J Hernandez-Ilizaliturri & Santiago Montes-Moreno (2015) CD20-negative diffuse large B-cell lymphomas: biology and emerging therapeutic options, Expert Review of Hematology, 8:3, 343-354, DOI: 10.1586/17474086.2015.1007862 To link to this article: http://dx.doi.org/10.1586/17474086.2015.1007862 Published online: 01 Feb 2015. Submit your article to this journal Article views: 165 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ierr20 Download by: [North Shore Med Ctr], [Jorge Castillo] Date: 16 March 2016, At: 07:44 Review CD20-negative diffuse large B-cell lymphomas: biology and emerging therapeutic options Expert Rev. Hematol. 8(3), 343–354 (2015) Jorge J Castillo*1, CD20-negative diffuse large B-cell lymphoma (DLBCL) is a rare and heterogeneous group of Julio C Chavez2, lymphoproliferative disorders. Known variants of CD20-negative DLBCL include plasmablastic Francisco J lymphoma, primary effusion lymphoma, large B-cell lymphoma arising in human herpesvirus 8-associated multicentric Castleman disease and anaplastic lymphoma kinase-positive DLBCL. Hernandez-Ilizaliturri3 Given the lack of CD20 expression, atypical cellular morphology and aggressive clinical and Santiago 4 behavior characterized by chemotherapy resistance and inferior survival rates, CD20-negative Montes-Moreno DLBCL represents a challenge from the diagnostic and therapeutic perspectives. -
Inclusion/Exclusion Criteria for National Cancer Institute (NCI) Sponsored Clinical Trials
Inclusion/Exclusion Criteria for National Cancer Institute (NCI) Sponsored Clinical Trials NCI Recommended Protocol Text and Guidance based on Joint Recommendations of the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends) The NCI’s Cancer Therapy Evaluation Program (CTEP) in the Division of Cancer Treatment and Diagnosis (DCTD) brought together NCI Divisions, Offices and Centers that sponsor NCI clinical trials to review the published recommendations by ASCO and Friends in October 2017 (https://www.asco.org/research-progress/clinical-trials/clinical-trial-eligibility-criteria). ASCO, Friends, and the US Food and Drug Administration (FDA) examined specific eligibility criteria (i.e., brain metastases, minimum age, HIV infection, and organ dysfunction and prior and concurrent malignancies) to determine whether to recommend definitions to extend trials to a broader population. The below table includes the ASCO/Friends recommendations and the modifications by the NCI after further review and additional input from pharmacology experts on the NCI’s Investigational Drug Steering Committee. NCI’s Experimental Therapeutics Clinical Trials Network (ETCTN) and NCI’s National Clinical Trials Network (NCTN) will utilize these broadened eligibility criteria in clinical trials going forward and active trials may be modified when feasible. CTEP has incorporated these criteria into the Generic Protocol Template updated September 4, 2018 posted on the CTEP website. To implement these inclusion criteria in NCI-sponsored -
2018 Annual Report to the Nation Indicating That Mortality Rates That Led to a Multimillion-Dollar Government Investment in Single- Due to Brain Tumors Are Increasing
ANNUAL REPORT 2018 www.braintumor.org 1 TABLE OF CONTENTS 2018 Progress................................................................. 4 Brain Tumor Survivor: Matt Tifft.............................. 5 Signature and Community Events.......................... 6 Donor Honor Roll: Signature Events...................... 7 Donor Honor Roll: Community Events.................. 8 GBM Research: Dr. Paul Mischel............................. 9 2018 Financials.............................................................. 10 Volunteer: Chandri Navarro....................................... 11 Volunteer Leadership.................................................... 13 Advocate: Pati Urias...................................................... 14 Donor Honor Roll........................................................... 15 2019 Signature Events................................................ 23 Mission, Vision, and Values........................................ 24 CONTACT US www.braintumor.org | 617-924-9997 55 Chapel St., Suite 200, Newton, MA 02458 2 A Letter from NBTS Chief Executive Officer & Board Chair maintaining a standard for data-sharing that far exceeds most projects of this kind. Another significant victory includes the passing of the Childhood Cancer STAR Act on June 5th, 2018, which National Brain Tumor Society staff helped write and advance through our legislative advocacy work. This law is the most comprehensive childhood cancer legislation ever taken up by Congress, designed to advance pediatric cancer efforts including brain tumor -
A Phase II Trial of the Src-Kinase Inhibitor AZD0530 in Patients with Advanced Castration-Resistant Prostate Cancer: a California Cancer Consortium Study Primo N
Clinical report 179 A phase II trial of the Src-kinase inhibitor AZD0530 in patients with advanced castration-resistant prostate cancer: a California Cancer Consortium study Primo N. Lara Jra,b, Jeff Longmatec, Christopher P. Evansa, David I. Quinnd, Przemyslaw Twardowskic, Gurkamal Chattae, Edwin Posadasf, Walter Stadlerf and David R. Gandaraa Prostate cancer cells undergo neuroendocrine AZD0530, a potent oral Src kinase inhibitor, is feasible differentiation during androgen deprivation and secrete and tolerable in this pretreated patient population neuropeptides, hence activating androgen receptor- but possessed little clinical efficacy as monotherapy. regulated genes. Src-family protein kinases are involved in Strong preclinical evidence warrants further neuropeptide-induced prostate cancer growth and investigation of AZD0530 in earlier-stage prostate migration. A phase II trial of AZD0530, an oral Src-family cancer or as combination therapy. Anti-Cancer Drugs kinase inhibitor, in patients with advanced castration 20:179–184 c 2009 Wolters Kluwer Health | Lippincott resistant prostate cancer was conducted. The primary Williams & Wilkins. endpoint was prostate cancer-specific antigen (PSA) response rate, defined as a 30% or greater decrease. Anti-Cancer Drugs 2009, 20:179–184 A two-stage Simon design was used. Eligibility criteria Keywords: castration-resistant, prostate cancer, Src inhibitor included documentation of castration resistance (including antiandrogen withdrawal), adequate end-organ aUniversity of California Davis Cancer Center, Sacramento, bVeterans’ function, and performance status, and not more than one Administration of Northern California, Mather, cCity of Hope Comprehensive Cancer Center, Duarte, dUniversity of Southern California Norris Cancer Center, prior taxane-based chemotherapy regimen. AZD0530 was Los Angeles, California, eUniversity of Pittsburgh Cancer Center, Pittsburgh, given at 175 mg orally once daily continuously.