L-Selectin Promotes the Maturation of Dendritic Cells Via Up-Regulation the Expression of TLR4 in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

L-Selectin Promotes the Maturation of Dendritic Cells Via Up-Regulation the Expression of TLR4 in Vitro Available online at www.annclinlabsci.org Annals of Clinical & Laboratory Science, vol. 47, no. 4, 2017 389 L-selectin Promotes the Maturation of Dendritic Cells via Up-regulation the Expression of TLR4 in vitro Zhishuai Ye1, Jia Liu1, Jie Zheng1, Jianing Zhang2, and Rongchong Huang1 1Department of Cardiology, The First Affiliated Hospital of Dalian Medical University and 2College of Life Sciences and Pharmacy, Dalian University of Technology, Dalian City, China Abstract. The relationship between dendritic cells (DCs) and L-selectin in the progress of atherosclerosis is unclear. Here, we used L-selectin co-cultured with DCs to investigate the effect of L-selectin on the maturation of DCs in vitro. Monocytes derived DCs were isolated and cultured from human peripheral blood. After being stimulated with L-selectin and/or its antagonist for 24-48 hours, the feather of cells was observed by the electron microscope. The expression of mature antigens CD1a, CD80, CD83, and CD86 were investigated by flow cytometric analysisAC (F S). RT-PCR and FACS were used to detect the mRNA and protein expression of Toll-like receptor 4(TLR-4). We found that only the cells of giving L-selectin have the mature special feature for irregular shapes. DCs which were stimulated by L-selectin have a larger number of expressing CD1a, CD80, CD83, and CD86 compared with non-stimulated and cultured with L-selectin antagonist. The transcript levels of TLR4 were significantly higher after L-selectin and lipopoly- saccharide (LPS) stimulated. And the antagonist of L-selectin can deeply decrease the expression of CD1a, CD80, CD83, and CD86 on DCs appeared to coincide with the level of TLR4 transcription. The results demonstrate L-selectin can promote the maturation of DCs via up-regulation the expression of TLR4. Key words: Atherosclerosis, Dendritic cells, L-selectin, TLR4. Introduction and immunoglobulin families also in concert with L-selectin molecules to mediate the adhesion and It was first confirmed that atherosclerosis maybe extravasation of leucocytes. Selectins have a com- caused by a response to chronic inflammation in mon structure containing an NH2-terminal Ca2+ 1986, and atherosclerosis is an inflammatory auto- dependent lectin, an epidermal growth factor immune disease, chronic inflammation throughout (EGF) to sustain the molecule structure, they also atherosclerosis [1]. contain a variable number consensus repeats of complement regulatory proteins [6]. L-selectin has The key defensive mechanism in the body isthe to combine with ligands in the adhesiveness. There leucocytic extravasation to surrounding tissue. have been confirmed three categories of molecules Leading to adhesion of cells to activated endotheli- as L-selectin ligand: sialomucin, proteoglycans, um is the first step of the immunity cascade by ad- and glycoproteins [7]. A number of known ligands hesion molecule. The selectin family is the most like the mucosal ones address in-cell adhesion important of adhesion molecules in the early period molecule-1(MadCAM-1), glycosylation-depen- of response, and it consists of the three closely ho- dent cell adhesion molecule-1(GlyCAM-1), mologous glycoproteins such as E-selectin, P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, and L-selectin. E-selectin is expressed on sLex [8,9]. Shedding of L-selectin appears to be endothelial cells, while P-selectin is expressed in regulated by leucocytes after activation. However, both endothelial cells and platelets. L-selectin, on the physiological significance and mechanisms of the other hand, is constitutively expressed on the shedding L-selectins are still not completely un- majority of leukocytes [2]. L-selectin exhibits adhe- derstood. L-selectin plays an important role in sive as well as signaling functions [3,4] and is par- both acute and chronic inflammatory response. ticularly important for lymphocyte homing to sec- Recent studies show that L-selectin in patients ondary lymphoid organs [5]. Members of integrin with coronary artery disease has a higher level as compared to healthy people, and the level of Address correspondence to Rongchong Huang, MD; Professor of Medicine/Cardiology, The First Affiliated Hospital of Dalian Medical L-selectin is related to the stabilization of University, Dalian 116011, China; e mail. [email protected] atherosclerosis. 0091-7370/17/0400-389. © 2017 by the Association of Clinical Scientists, Inc. 390 Annals of Clinical & Laboratory Science, vol. 47, no. 4, 2017 Figure 1. Analysis of different L-selectin concentration for DCs maturation. (A) Flow cytometry data of CD1a, CD80, CD83 and CD86 of DCs after co-culture with different L-selectin concentration from 75ng/ml to 200ng/ml. (B) Statistical analysis results from four independent groups respectively. Data are expressed as Mean±SD;*p<0.05 100ng/ml L-selectin vs. 75ng/ml L-selectin; #p<0.05 100ng/ml L-selectin vs. 200ng/ml L-selectin. Dendritic cells (DCs) are specialized antigen pre- Materials and Methods senting cells (APCs) which have unique ability to induce a primary immune response by activation of Generation of dendritic cells from monocytes. This in- naive T cells [10]. Their immune function depends vestigation was performed with approval by the Ethics on their maturation. In most tissues, DCs are pres- Committee of the First Affiliated Hospital of Dalian Medical University, China. Informed consent was ob- ent in an immature state and are unable to stimu- tained from blood donors. The principal method for late naive T cells. Mature DCs have the special tree- generating BMDCs was adapted from that published by like shapes and they obtain the ability of Parlato et al. with minor modifications [14]. Briefly, two downregulation of endocytotic activity, but upreg- hundred milliliter blood was obtained from each donor. ulation of adhesion molecules (CD11a, CD50, The mixture of containing white cells and lymphocyte CD54 and CD58), co-stimulatory molecules separation medium in centrifuge tubes were density gra- (CD40, CD80/B7.1, CD86/B7.2) and antigen dient centrifuged at 2000rpm for 30 min using presenting molecules [10-12]. However, the role of Histoplaque 1077 (Sigma, St Louis, MO, USA). The DCs in atherosclerosis-related autoimmunity has pure monocytes were collected anti-CD14+ microbeads not been clearly studied. The presence of dendritic (Miltenyi Biotec, Auburn, CA, USA) and seeded into 6-well plates, cultured in 3ml RPMI 1640 medium cells in the aorta and atherosclerotic lesions sug- (Gibco, USA) containing 5% fetal calf serum (Gibco, gests that presentation of lesion antigens is impor- USA), 100ng/ml recombinant human granulocyte-mac- tant in atherosclerosis development [13]. rophage-colony-stimulating factor (rhGM-CSF, Peprotech, NJ, USA) and 50ng/ml recombinant human Both dendritic cells (DCs) and L-selectin are relat- interleukin-4 (rhIL-4, Peprotech, NJ, USA). On day 5, ed to atherosclerosis. But it is unclear that whether cells were treated with phosphate buffered sodium (PBS) the interaction of L-selectin on DCs is involved in or lipopolysaccharide (LPS)(1ng/mL, Sigma, St Louis, the progression of atherosclerosis. The purpose of MO, USA) or L-selectin (75-200ng/mL, ProSpec, USA) this present study is to observe the effect on DCs or L-selectin antagonist Fucoidan (5g/ml) ((Sigma, St differentiation and immune function by different Louis, MO, USA) for 48 hours. Our previous study has shown that LPS (1ng/ml) could effectively induce DC concentration of L-selectin. maturation and did not significantly promote apoptosis L-selectin induce maturation of DCs by TLR4 391 Figure 2. L-selectin promotes immature DCs (A,×6000) to mature DCs (B,×8000), which was observed by transmission elec- tron microscope. and this concentration of LPS was therefore used in this Flow cytometric analysis of protein expression of TLR-4. study. Until now, there is no related literature about the Cells (5×105) were harvested and blocked with 10% normal proper concentration of L-selectin incubated with DCs. goat serum for 15 minutes at 4°C, washed, and then stained So we refer to the concentration of other selectins and with PE-conjugated mAbs against TLR-4 ( eBioscience, choose the gradient of 75 ng/ml, 100 ng/ml and 200 ng/ USA) for 60 min at 4°C. After immunofluorescence staining, ml. According to the level of mature DCs stimulate by cells were analyzed by FACS Calibur using Cell Quest soft- L-selectin, we could confirm the proper concentration of ware (Becton Dickinson). L-selectin. The cell viability of each group was measured using Tr ypan blue exclusion method and cell viability Statistical analysis. All experiments were repeated at least 3 was over 90% in all groups. times with different cells. Data were expressed as the mean ± standard deviation (SD). Statistical significance among the Flow cytometric analysis for DCs maturation mea- experimental groups was examined by one-way analysis of surement. Cells (5×105) were harvested and blocked variance (ANOVA), followed by the Student-Newman- with 10% normal goat serum for 15 minutes at 4°C, Keuls post hoc test for statistical significance. A p value less washed, and then stained with PE-conjugated mAbs than 0.05 was considered statistically significant. against CD1a, CD80, CD83 and CD86 (all from Becton Dickinson, San Diego, CA, USA) for 30 minutes Results at 4°C. Control immunostaining was performed using the respective nonimmune IgG; no specific staining was The proper concentration of L-selectin for stimulat- observed. After immunofluorescence staining, cells were ing DCs. The L-selectin concentration gradient of analyzed by fluorescence-activated cell sortingAC (F S) 75ng/ml, 100ng/ml and 200ng/ml was chosen for Calibur using Cell Quest software (Becton Dickinson). stimulating DCs. The flow cytometry data of CD1a, RNA isolation and reverse transcription-polymerase CD80, CD83, and CD86 showed that the L-selectin chain reaction (RT-PCR). Total RNA was extracted concentration of 100ug/ml can make the highest level from DCs using a Protein & RNA Extraction Kit of DCs expressing reference proteins (Figure 1).
Recommended publications
  • Tools for Cell Therapy and Immunoregulation
    RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion.
    [Show full text]
  • CD2 Molecules Redistribute to the Uropod During T Cell Scanning: Implications for Cellular Activation and Immune Surveillance
    CD2 molecules redistribute to the uropod during T cell scanning: Implications for cellular activation and immune surveillance Elena V. Tibaldi*†, Ravi Salgia†‡, and Ellis L. Reinherz*†§ *Laboratory of Immunobiology and ‡Division of Adult Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, and †Department of Medicine, Harvard Medical School, Boston, MA 02115 Communicated by Stuart F. Schlossman, Dana-Farber Cancer Institute, Boston, MA, April 9, 2002 (received for review February 14, 2002) Dynamic binding between CD2 and CD58 counter-receptors on op- cells, whereas its counter-receptor CD58 is expressed on a posing cells optimizes immune recognition through stabilization of diverse array of nucleated and non-nucleated cells including cell–cell contact and juxtaposition of surface membranes at a distance APCs and stromal cells (reviewed in refs. 11 and 12). CD2 suitable for T cell receptor–ligand interaction. Digitized time-lapse functions in both T cell adhesion and activation processes (13). Ϸ differential interference contrast and immunofluorescence micros- Of note, the weak affinity of the CD2-CD58 interaction (Kd copy on living cells now show that this binding also induces T cell 1 ␮M) is associated with remarkably fast on and off rates that polarization. Moreover, CD2 can facilitate motility of T cells along foster rapid and extensive exchange between CD2 and CD58 antigen-presenting cells via a movement referred to as scanning. Both partners on opposing cell surfaces (14–16). These biophysical activated CD4 and CD8 T cells are able to scan antigen-presenting cells characteristics are reminiscent of the selectin–ligand interactions surfaces in the absence of cognate antigen.
    [Show full text]
  • Folate Receptor Β Regulates Integrin Cd11b/CD18 Adhesion of a Macrophage Subset to Collagen
    Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen This information is current as Christian Machacek, Verena Supper, Vladimir Leksa, Goran of September 25, 2021. Mitulovic, Andreas Spittler, Karel Drbal, Miloslav Suchanek, Anna Ohradanova-Repic and Hannes Stockinger J Immunol 2016; 197:2229-2238; Prepublished online 17 August 2016; doi: 10.4049/jimmunol.1501878 Downloaded from http://www.jimmunol.org/content/197/6/2229 Supplementary http://www.jimmunol.org/content/suppl/2016/08/17/jimmunol.150187 Material 8.DCSupplemental http://www.jimmunol.org/ References This article cites 49 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/197/6/2229.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Folate Receptor b Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen Christian Machacek,* Verena Supper,* Vladimir Leksa,*,† Goran Mitulovic,‡ Andreas Spittler,x Karel Drbal,{,1 Miloslav Suchanek,{ Anna Ohradanova-Repic,* and Hannes Stockinger* Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation.
    [Show full text]
  • Response Gene Expression That Modulates T Cell Induces a Differential Cytokine Tuberculosis Mycobacterium Dendritic Cells with I
    Infection of Human Macrophages and Dendritic Cells with Mycobacterium tuberculosis Induces a Differential Cytokine Gene Expression That Modulates T Cell This information is current as Response of September 24, 2021. Elena Giacomini, Elisabetta Iona, Lucietta Ferroni, Minja Miettinen, Lanfranco Fattorini, Graziella Orefici, Ilkka Julkunen and Eliana M. Coccia J Immunol 2001; 166:7033-7041; ; Downloaded from doi: 10.4049/jimmunol.166.12.7033 http://www.jimmunol.org/content/166/12/7033 http://www.jimmunol.org/ References This article cites 51 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/166/12/7033.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Infection of Human Macrophages and Dendritic Cells with Mycobacterium tuberculosis Induces a Differential Cytokine Gene Expression That Modulates T Cell Response1 Elena Giacomini,* Elisabetta Iona,† Lucietta Ferroni,* Minja Miettinen,‡ Lanfranco Fattorini,† Graziella Orefici,† Ilkka Julkunen,‡ and Eliana M.
    [Show full text]
  • REVIEW Dendritic Cell-Based Vaccine
    Leukemia (1999) 13, 653–663 1999 Stockton Press All rights reserved 0887-6924/99 $12.00 http://www.stockton-press.co.uk/leu REVIEW Dendritic cell-based vaccine: a promising approach for cancer immunotherapy K Tarte1 and B Klein1,2 1INSERM U 475, Montpellier; and 2Unit For Cellular Therapy, CHU Saint Eloi, Montpellier, France The unique ability of dendritic cells to pick up antigens and to + + and interstitial DC pick up antigens (Ag) in peripheral tissues activate naive and memory CD4 and CD8 T cells raised the and migrate to lymphoid organs through lymphatic vessels in possibility of using them to trigger a specific anti-tumor 8 immunity. If numerous studies have shown a major interest in response to inflammatory stimuli. Activated mature DC, dendritic cell-based vaccines for cancer immunotherapy in ani- which express CD1a and CD83 antigens, represent the latter mal models, only a few have been carried out in human can- stage of LC and interstitial DC maturation. According to their cers. In this review, we describe recent findings in the biology high expression of MHC class I, MHC class II and costimu- of dendritic cells that are important to generate anti-tumor cyto- latory molecules, they present, efficiently, Ag-derived peptides toxic T cells in vitro and we also detail clinical studies reporting to CD4+ and CD8+ T lymphocytes in lymph node T cell areas the obtention of specific immunity to human cancers in vivo using reinfusion of dendritic cells pulsed with tumor antigens. (Figure 1). Recently, another subset of DC was identified on Keywords: dendritic cells; cancer; immunotherapy the basis of their high expression of the interleukin-3 receptor alpha chain (IL-3R␣hi).
    [Show full text]
  • The Role of the CD58 Locus in Multiple Sclerosis
    The role of the CD58 locus in multiple sclerosis Philip L. De Jagera,b,c,1, Clare Baecher-Allana, Lisa M. Maiera,c, Ariel T. Arthurd, Linda Ottobonia,c, Lisa Barcellose, Jacob L. McCauleyf, Stephen Sawcerg, An Gorish, Janna Saarelai, Roman Yelenskyc,j, Alkes Pricec,k, Virpi Leppai, Nick Pattersonc, Paul I. W. de Bakkerb,c, Dong Trana,c, Cristin Aubina,c, Susan Pobywajloa, Elizabeth Rossina,c, Xinli Huc, Charles W. Ashleya, Edwin Choyc,j, John D. Riouxc,l, Margaret A. Pericak-Vancef, Adrian Ivinsonm, David R. Boothn, Graeme J. Stewartn, Aarno Palotiec,h, Leena Peltonenc,h,Be´ ne´ dicte Duboisg, Jonathan L. Haineso, Howard L. Weinera, Alastair Compstong, Stephen L. Hauserp,q, Mark J. Dalyc,j, David Reichc,j, Jorge R. Oksenbergp,q, and David A. Haflera,c. aDivision of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; bPartners Center for Personalized Genetic Medicine, Boston, MA 02115; cProgram in Medical and Population Genetics, Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Medicine and the Nerve Research Foundation, University of Sydney, Sydney NSW 2145, Australia; eDivision of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7360; fMiami Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136; gDepartment of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Box 165, Hills Road, Cambridge CB2 2QQ,
    [Show full text]
  • Understanding the Synergy of Nkp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy
    cells Article Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy 1,2, 3, 1, 1 Loris Zamai * , Genny Del Zotto y , Flavia Buccella y, Sara Gabrielli , Barbara Canonico 1 , Marco Artico 4, Claudio Ortolani 1 and Stefano Papa 1 1 Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy; fl[email protected] (F.B.); [email protected] (S.G.); [email protected] (B.C.); [email protected] (C.O.); [email protected] (S.P.) 2 INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy 3 Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; [email protected] 4 Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0722-304319; Fax: +39-0722-304319 These authors contributed equally. y Received: 11 February 2020; Accepted: 13 March 2020; Published: 19 March 2020 Abstract: The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity.
    [Show full text]
  • The B7/BB1 Antigen Provides One of Several Costimulatory Signals for the Activation of CD4+ T Lymphocytes by Human Blood Dendritic Cells in Vitro
    Amendment history: Correction (April 1993) The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J W Young, … , R M Steinman, B Dupont J Clin Invest. 1992;90(1):229-237. https://doi.org/10.1172/JCI115840. Research Article T cells respond to peptide antigen in association with MHC products on antigen-presenting cells (APCs). A number of accessory or costimulatory molecules have been identified that also contribute to T cell activation. Several of the known accessory molecules are expressed by freshly isolated dendritic cells, a distinctive leukocyte that is the most potent APC for the initiation of primary T cell responses. These include ICAM-1 (CD54), LFA-3 (CD58), and class I and II MHC products. Dendritic cells also constitutively express the accessory ligand for CD28, B7/BB1, which has not been previously identified on circulating leukocytes freshly isolated from peripheral blood. Dendritic cell expression of both B7/BB1 and ICAM-1 (CD54) increases after binding to allogeneic T cells. Individual mAbs against several of the respective accessory T cell receptors, e.g., anti-CD2, anti-CD4, anti-CD11a, and anti-CD28, inhibit T cell proliferation in the dendritic cell-stimulated allogeneic mixed leukocyte reaction (MLR) by 40-70%. Combinations of these mAbs are synergistic in achieving near total inhibition. Other T cell-reactive mAbs, e.g., anti-CD5 and anti-CD45, are not inhibitory. Lymphokine secretion and blast transformation are similarly reduced when active accessory ligand-receptor interactions are blocked in the dendritic cell-stimulated allogeneic […] Find the latest version: https://jci.me/115840/pdf The B7/BB1 Antigen Provides One of Several Costimulatory Signals for the Activation of CD4+ T Lymphocytes by Human Blood Dendritic Cells In Vitro James W.
    [Show full text]
  • Immunology Focus Summer | 2006 Immunology FOCUS
    R&D Systems Immunology Focus summer | 2006 Immunology FOCUS Inside page 2 Signal Transduction: Kinase & Phosphatase Reagents page 3 Lectin Family page 4 Regulatory T Cells page 5 Natural Killer Cells page 6 Innate Immunity & Dendritic Cells page 7 Co-Stimulation/-Inhibition The B7 Family & Associated Molecules page 8 Proteome Profiler™ Phospho-Immunoreceptor Array ITAM/ITIM-Associated Receptors www.RnDSystems.com Please visit our website @ www.RnDSystems.com for product information and past issues of the Focus Newsletter: Cancer, Neuroscience, Cell Biology, and more. Quality | Selec tion | Pe rformance | Result s Cancer Development Endocrinology Immunology Neuroscience Proteases Stem Cells Signal Transduction: Kinase & Phosphatase Reagents Co-inhibitory PD-L2/PD-1 signaling & SHP-2 phosphatase KINASE & PHOSPHATASE RESEARCH REAGENTS Regulation of MAP kinase (MAPK) signaling Kinases Phosphatases pathways is critical for T cell development, MOLECULE ANTIBODIES ELISAs/ASSAYS MOLECULE ANTIBODIES ELISAs/ASSAYS activation, differentiation, and death. MAPKs Akt Family H M R H M R Alkaline Phosphatase* H M R are activated by the dual phosphorylation of threonine and tyrosine residues resulting in AMPK H M R Calcineurin A, B H M R subsequent transcription factor activation. ATM H M R H CD45 H M H M The MAPK signaling pathway in T cells can be CaM Kinase II Ms CDC25A, B* H M R triggered by cytokines, growth factors, and CDC2 H M R DARPP-32 M R ligands for transmembrane receptors. Chk1, 2 H M R H M R DEP-1/CD148* H M R H Ligation of the T cell receptor (TCR)/CD3 ERK1, 2 H M R H M R LAR H M R complex results in rapid activation of PI 3- kinase, which leads to Akt and MAPK ERK3 H Lyp H activation.
    [Show full text]
  • Gene CD58 Human Basis for Alternative Mrna Splicing of The
    Gene Structure, Promoter Characterization, and Basis for Alternative mRNA Splicing of the Human CD58 Gene This information is current as Reinhard Wallich, Christiane Brenner, Yvonne Brand, Matthias of September 23, 2021. Roux, Manuel Reister and Stefan Meuer J Immunol 1998; 160:2862-2871; ; http://www.jimmunol.org/content/160/6/2862 Downloaded from References This article cites 60 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/160/6/2862.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Gene Structure, Promoter Characterization, and Basis for Alternative mRNA Splicing of the Human CD58 Gene1 Reinhard Wallich,2 Christiane Brenner, Yvonne Brand, Matthias Roux, Manuel Reister, and Stefan Meuer The 60-kDa lymphocyte function-associated Ag-3 (LFA-3/CD58), a highly glycosylated adhesion molecule that serves as ligand for the T cell-restricted glycoprotein CD2, is encoded by a gene at the human chromosome locus 1p13.
    [Show full text]
  • Resting Peripheral Blood B Cells Presentation of Immune Complexes
    Complement Opsonization Is Required for Presentation of Immune Complexes by Resting Peripheral Blood B Cells This information is current as Susan A. Boackle, Margaret A. Morris, V. Michael Holers of September 25, 2021. and David R. Karp J Immunol 1998; 161:6537-6543; ; http://www.jimmunol.org/content/161/12/6537 Downloaded from References This article cites 42 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/161/12/6537.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Complement Opsonization Is Required for Presentation of Immune Complexes by Resting Peripheral Blood B Cells1 Susan A. Boackle,* Margaret A. Morris,† V. Michael Holers,* and David R. Karp2† Complement receptor 2 (CD21, CR2) is a B cell receptor for complement degradation products bound to Ag or immune complexes.
    [Show full text]
  • Characterisation of Chicken OX40 and OX40L
    Characterisation of chicken OX40 and OX40L von Stephanie Hanna Katharina Scherer Inaugural-Dissertation zur Erlangung der Doktorw¨urde der Tier¨arztlichenFakult¨at der Ludwig-Maximilians-Universit¨atM¨unchen Characterisation of chicken OX40 and OX40L von Stephanie Hanna Katharina Scherer aus Baunach bei Bamberg M¨unchen2018 Aus dem Veterin¨arwissenschaftlichenDepartment der Tier¨arztlichenFakult¨at der Ludwig-Maximilians-Universit¨atM¨unchen Lehrstuhl f¨urPhysiologie Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. Thomas G¨obel Gedruckt mit Genehmigung der Tier¨arztlichenFakult¨at der Ludwig-Maximilians-Universit¨atM¨unchen Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, Ph.D. Berichterstatter: Univ.-Prof. Dr. Thomas G¨obel Korreferenten: Priv.-Doz. Dr. Nadja Herbach Univ.-Prof. Dr. Bernhard Aigner Prof. Dr. Herbert Kaltner Univ.-Prof. Dr. R¨udiger Wanke Tag der Promotion: 27. Juli 2018 Meinen Eltern und Großeltern Contents List of Figures 11 Abbreviations 13 1 Introduction 17 2 Fundamentals 19 2.1 T cell activation . 19 2.1.1 The activation of T cells requires the presence of several signals 19 2.1.2 Costimulatory signals transmitted via members of the im- munoglobulin superfamily . 22 2.1.3 Costimulatory signals transmitted via members of the cy- tokine receptor family . 23 2.1.4 Costimulatory signals transmitted via members of the tumour necrosis factor receptor superfamily . 24 2.2 The tumour necrosis factor receptor superfamily . 26 2.2.1 The structure of tumour necrosis factor receptors . 26 2.2.2 Functional classification of TNFRSF members . 28 2.3 The tumour necrosis factor superfamily . 29 2.3.1 The structure of tumour necrosis factor ligands .
    [Show full text]