Polymer Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Fundamentals of Polymer Chemistry
1 Fundamentals of Polymer Chemistry H. Warson 1 THE CONCEPT OF A POLYMER 1.1 Historical introduction The differences between the properties of crystalline organic materials of low molecular weight and the more indefinable class of materials referred to by Graham in 1861 as ‘colloids’ has long engaged the attention of chemists. This class includes natural substances such as gum acacia, which in solution are unable to pass through a semi-permeable membrane. Rubber is also included among this class of material. The idea that the distinguishing feature of colloids was that they had a much higher molecular weight than crystalline substances came fairly slowly. Until the work of Raoult, who developed the cryoscopic method of estimating molecular weight, and Van’t Hoff, who enunciated the solution laws, it was difficult to estimate even approximately the polymeric state of materials. It also seems that in the nineteenth century there was little idea that a colloid could consist, not of a product of fixed molecular weight, but of molecules of a broad band of molecular weights with essentially the same repeat units in each. Vague ideas of partial valence unfortunately derived from inorganic chem- istry and a preoccupation with the idea of ring formation persisted until after 1920. In addition chemists did not realise that a process such as ozonisation virtually destroyed a polymer as such, and the molecular weight of the ozonide, for example of rubber, had no bearing on the original molecular weight. The theory that polymers are built up of chain formulae was vigorously advocated by Staudinger from 1920 onwards [1]. -
Origins of Life: Transition from Geochemistry to Biogeochemistry
December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times. -
Polymers: a Historical Perspective
Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 242–250. ISSN 0035-9173/19/020242-09 Polymers: a historical perspective Robert Burford, FRSN Emeritus Professor, School of Chemical Engineering, UNSW Sydney Email: [email protected] Abstract This commissioned paper outlines the emergence of new forms of synthetics and plastics as our under- standing of polymer chemistry has advanced. Synopsis phenols and styrene are “polymerised” to olymers have been ubiquitous since form thermosets,1 including phenol for- simple gaseous molecules began to form maldehyde “Bakelite” thermosets, but are P 2 life-giving organic structures many millions also present in thermoplastics including of years ago. Today, we rely upon proteins polystyrene and related materials such as comprising twenty amino acids, as well as styrene acrylonitrile (SAN) and ABS.3 The DNA and RNA with many fewer nucleic manufacture of Bakelite is often viewed as acids. Similarly, many fibres and plants the birth of the synthetic polymer industry. comprise carbohydrate polymers: we and The enormous growth both in diversity and other animals use these and protein-based volume of thermoplastics is a feature of the polymers for our diet. Hence, organic earth’s 20th century, dismissively called the “plastics surface has an enormous diversity of natu- age.” Again, important but sometimes ser- rally occurring polymers, sometimes called endipitous discoveries are a feature of this macromolecules. period, but the associated large-scale produc- Today, these continue to feed and clothe tion introduced multinational corporations us, and much more, but the beginning of originating mainly in Europe, the US and man-made materials might be considered Japan. -
Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter and Morphology Problems
University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2012 Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter And Morphology Problems Nagarjuna Gavvalapalli University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Chemistry Commons Recommended Citation Gavvalapalli, Nagarjuna, "Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter And Morphology Problems" (2012). Open Access Dissertations. 608. https://doi.org/10.7275/xp7e-nb11 https://scholarworks.umass.edu/open_access_dissertations/608 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. BREAKING THE BARRIERS OF ALL-POLYMER SOLAR CELLS: SOLVING ELECTRON TRANSPORTER AND MORPHOLOGY PROBLEMS A Dissertation Presented by NAGARJUNA GAVVALAPALLI Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2012 Chemistry © Copyright by Nagarjuna Gavvalapalli 2012 All Rights Reserved BREAKING THE BARRIERS OF ALL-POLYMER SOLAR CELLS: SOLVING ELECTRON TRANSPORTER AND MORPHOLOGY PROBLEMS A Dissertation Presented by NAGARJUNA GAVVALAPALLI Approved as to style -
CHEMISTRY TECHNIQUES a Dissertation Presented to the Graduate Faculty Of
PREPARING POLYMERIC BIOMATERIALS USING “CLICK” CHEMISTRY TECHNIQUES A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Fei Lin May, 2014 PREPARING POLYMERIC BIOMATERIALS USING “CLICK” CHEMISTRY TECHNIQUES Fei Lin Dissertation Approved: Accepted: ______________________ _______________________ Advisor Department Chair Dr. Matthew L. Becker Dr. Coleen Pugh ______________________ _______________________ Committee Member Dean of the College Dr. Abraham Joy Dr. Stephen Z. D. Cheng ______________________ _______________________ Committee Member Dean of the Graduate School Dr. Chrys Wesdemiotis Dr. George R. Newkome ______________________ _______________________ Committee Member Date Dr. Shi-Qing Wang ______________________ Committee Member Dr. Robert A. Weiss ii ABSTRACT Significant efforts have been focused on preparing degradable polymeric biomaterials with controllable properties, which have the potential to stimulate specific cellular responses at the molecular level. “Click” reactions provide a universal tool box to achieve that goal through molecular level design and modification. This dissertation demonstrates multiple methodologies and techniques to develop advanced biomaterials through combining degradable polymers and “click” chemistry. In my initial work, a novel class of amino acid-based poly(ester urea)s (PEU) materials was designed and prepared for potential applications in bone defect treatment. PEUs were synthesized via interfacial polycondensation, and showed degradability in vivo and possessed mechanical strength superior to conventionally used polyesters. Further mechanical enhancement was achieved after covalent crosslinking with a short peptide crosslinker derived from osteogenic growth peptide (OGP). The in vitro and in an in vivo subcutaneous rat model demonstrated that the OGP-based crosslinkers promoted proliferative activity of cells and accelerated degradation properties of PEUs. -
Polymer Chemistry Degree Requirements Faculty Bachelor of Science Degree Petar R
Polymer Chemistry Degree requirements Faculty Bachelor of Science Degree Petar R. Dvornic, Ph.D., in Polymer Chemistry** Chair, Professor of Chemistry CORE SCIENCE COURSES (36 HOURS) CHEM-215: General Chemistry I (3 hours) Ram Gupta, Ph.D., and CHEM-216: General Chemistry I Lab (2 hours) Assistant Professor of Chemistry Pittsburg State University CHEM-225: General Chemistry II (3hours) and CHEM-226: General Chemistry II Lab (2 hours) Santimukul Santra, Ph.D., CHEM-235: Laboratory Safety & Compliance (1 hour) CHEM-325: Organic Chemistry I (3 hours) Assistant Professor of Chemistry and CHEM-326: Organic Chemistry Lab (2 hours) Jeanne Norton, Ph.D., Polymer CHEM-335: Organic Chemistry II (3 hours) and CHEM-336: Organic Chemistry II Lab (2 hours) Assistant Professor of MATH-150: Calculus I (5 hours) Plastics Engineering Technology PHYS-104: Engineering Physics I (4 hours) and PHYS-130: Elementary Physics Lab I (1 hour) Charles (Jody) Neef, Ph.D., Chemistry PHYS-105: Engineering Physics II (4 hours) Assistant Professor of Chemistry and PHYS-132: Engineering Physics Lab II (1 hour) POLYMER CHEMISTRY CORE COURSES (22-24 HOURS) Paul Herring, CHEM-360: Intro to Polymer Science & Technology (3 hours) Associate Professor of CHEM-611: Senior Review & Assessment (1 hour) CHEM-625: Polymer Synthesis & Characterizations (3 hours) Plastics Engineering Technology and CHEM-626: Polymer Synthesis & Characterizations Laboratory (2 hours) Bob Susnik, CHEM-680: Physical Properties of Polymers (3 hours) Professor of Plastics Engineering Technology CHEM-681: -
Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications
molecules Review Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications Paul Strasser and Ian Teasdale * Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria; [email protected] * Correspondence: [email protected] Received: 13 March 2020; Accepted: 4 April 2020; Published: 8 April 2020 Abstract: Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure–property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context. -
Dielectric Properties of Poly(Enaminonitrile)S
Polymer Journal, Vol. 32, No. 1, pp 57-61 (2000) Dielectric Properties of Poly(enaminonitrile)s Ji-Heung K1M,t Sang You! KIM,* James A. MOORE,** and James F. MASON*** Department ()f Chemical Engineering, Sungkyunkwan University, 300 Chunchun, Jangan, Suwon, Kyonggi 440-746, Korea * Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1 Kusung, Yusung, Taejon 305-701, Korea ** Department of Chemistry, Polymer Science and Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, U.S.A. *** ATOCHEM N.A. King of Prussia, PA 19406--0018, U.S.A. (Received June 9, 1999) ABSTRACT: Poly(enaminonitrile)s (PEANs), a new class of thermally stable aromatic polymers, possess excellent thermal stability, good mechanical properties and are easily soluble in many organic solvents. Flexible, tough films can be cast from these solutions. These polymers undergo a 'curing' reaction at 300--350°C to insoluble, more dimensionally stable materials without evolution of volatile byproducts. We summarize here the dielectric data measured at a frequency of 100 kHz, 25°C for some PEANs, and discuss the results in relation to their structures. KEY WORDS Poly(enaminonitrile) / Dielectric Constant / Thermally Stable Polymer / Structure- Property / The production of thermally stable organic polymers reflects the alignment of dipoles and the net polariza has been the subject of many research efforts for the past tion of the molecules which is attributed to restricted 30 years because of the growing application of thermally movement of charges within the material. In an electric stable polymers in the fields of aerospace and elec field, positive charges move with the electric field and tronics.1 ·2 Most of thermally stable polymers synthesiz an equal number of negative charges move against it ed are aromatic, rigid-rod type polymers that have resulting in no net charge anywhere in the sample. -
Introduction to Macromolecular Chemistry
Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am, NC 02/99 Dr. Christian Merten, Ruhr-Uni Bochum, 2019 www.ruhr-uni-bochum.de/chirality A timeline of polymer chemistry Cotton (Mexico) Shellac (East indies) produced by the bug Kerria lacca ~ 5000 BC ~ 3000 BC ~ 2000 BC 0 ~ 1500 Gum arabic harvested in Arabia, Sudan, and West Asia since antiquity Silk (China) from the cocoons of the larvae of the mulberry silkworm Bombyx mori Macromolecular Chemistry | Dr. C. Merten, 2019 2 A timeline of polymer chemistry 1806 (J. Gough) Experimental studies on elasticity of natural gum 1859 (J. P. Joule) Thermodynamic principles of elasticity 1884/1919 (E. Fischer) Structure elucidation of sugars and proteins 1920s (H. Staudinger) The idea of a macromolecule 1929 (W. Carother) Preparation and characterization of polycondensates 1939/45 Debye: light scattering of polymer solutions Flory: viscosity of polymer solutions 1950 Ethylene polymerization (K. Ziegler) Polypropylene / tacticity (G. Natta) Macromolecular Chemistry | Dr. C. Merten, 2019 3 Father of polymer chemistry Hermann Staudinger (1881-1965) Professor of Chemistry, University Freiburg, Germany Nobel Prize in Chemistry 1953 Birth of polymer chemistry: Chem. Ber. 53 (1920) 1073-1085 State of the art in 1920: most obvious not observable explanation Macromolecular Chemistry | Dr. C. Merten, 2019 4 Some remarkable and important statements of H. Staudinger Chem. Ber. 53 (1920) 1073-1085 Such assumptions do not need to be made, as all polymerization products can be explained using regular valence bonding… … and in organic chemistry, we will try to represent properties of compounds using regular valence bonds as long as possible. -
Impact of the Pendant Group on the Chain Conformation and Bulk Properties of Norbornene Imide-Based Polymers † § ‡ § † ‡ Bret M
Article Cite This: Macromolecules XXXX, XXX, XXX−XXX pubs.acs.org/Macromolecules Impact of the Pendant Group on the Chain Conformation and Bulk Properties of Norbornene Imide-Based Polymers † § ‡ § † ‡ Bret M. Boyle, , Ozge Heinz, , Garret M. Miyake,*, and Yifu Ding*, † Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States ‡ Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States *S Supporting Information ABSTRACT: Three series of well-defined norbornene imide-based polymers with different pendant groups were synthesized to investigate the effect of the pendant group on the polymer conformation in solution and bulk melt properties. Each of these three series was examined by analyzing the polymers’ bulk z-average 8 (UTC). radius of gyration via static light scattering and the polymers’ melt viscoelastic properties via oscillatory measurements and differential scanning calorimetry. Sterically bulky pendant wedge groups modestly increase the rodlike conformation of the norbornene- imide polymer, however, the inherent rigidity of the polymer main- chain can still be observed with less bulky substituents. In stark contrast, the different side groups significantly impacted the bulk o legitimately share published articles. viscoelastic and thermal properties. By increasing the pendant group size, the chain diameter of the polymer increases and lowers the entanglement modulus. Finally, as the wedge pendant group size increases, the segmental relaxation time and the fragility index of these norbornene-based polymers are decreased. ■ INTRODUCTION groups extending away from the backbone that contain one or Bottlebrush polymers are molecules containing densely spaced more branch points in which another generation of branches begins. Often, these dendronized polymers can be directly polymeric side chains grafted onto a central backbone. -
Che 360: Polymer Chemistry Syllabus
CHE 360: POLYMER CHEMISTRY SYLLABUS Instructor: Dr. Zachary Rodgers Text: Introduction to Polymer Chemistry (Carraher) Course webpage: Desire2Learn Prerequisites: CHE 262: Organic Chemistry Contact Info: (724)-946-6289 [email protected] Class Time: TR 9:10 – 10:50 am Lab Time: R 2:00 – 5:00 pm Course Overview The word polymer comes from the Greek words “poly”, meaning many, and “mer”, meaning parts. Like the macrostructures we see every day, such as a house built of brick, the larger structures of polymers have very different properties from their smaller chemical building blocks. The uniqueness of polymer properties provide most of the materials we interact with on a regular basis, including our clothes, plastics, paper, adhesives, and even our bodies themselves. Therefore, no education in chemistry would be complete without describing the general properties, synthesis, processing, and function of polymeric materials. This semester long course aims to: Describe how polymer morphology affects a polymer’s overall properties and behavior Teach polymer characterization techniques to determine their structure and size Detail a variety of polymerization mechanisms and their underlying kinetic/thermodynamic characteristics Introduce the practical techniques used to synthesize a wide range of polymeric structures Provide several examples of the industrial processing techniques used to generate consumable polymer products Make connections between material to answer complex and multi-step problems Expose students to literature research in materials and polymer science Grading Grading Weights 10% Homework Assignments (~6 – 8 total) 20% Laboratory Grade 37.5% Exams (3 Tests) 12.5% Student Presentation 20% Final Grading Scale 90 - 100 A 72 – 77 C 88 - 89 B+ 70 – 71 C- 82 – 87 B 68 – 69 D+ 80 – 81 B- 60 – 67 D 78 – 79 C+ < 60 F The scale set in this syllabus is non-negotiable. -
Advances in Polycarbodiimide Chemistry
Polymer 52 (2011) 1693e1710 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Feature Article Advances in polycarbodiimide chemistry Justin G. Kennemur, Bruce M. Novak* Department of Chemistry, North Carolina State University, USA article info abstract Article history: Over the last 15 years, large strides have been taken with regards to synthesis, catalysis, structural Received 21 December 2010 control, and functional application of polycarbodiimides (polyguanidines); a unique class of helical Received in revised form macromolecules that are derived from the polymerization of carbodiimide monomers using transition 13 February 2011 metal catalysis. This manuscript will provide a summary of the synthesis and characterization studies in Accepted 18 February 2011 addition to the large variety of properties discovered for these systems and potential applications Available online 3 March 2011 associated with these properties. In large part, it is the chiral helical backbone coupled with synthetically selective pendant groups which has allowed creation of polycarbodiimides spanning a large range of Keywords: Helical polymer potential applications. Such applications include cooperative chiral materials, liquid crystalline materials, Chiral polymer optical sensors and display materials, tunable polarizers, sites for asymmetric catalysis, and recyclable Polycarbodiimide polymers. Manipulation of the two pendant groups that span away from the amidine backbone repeat Polyguanidine unit has allowed solubility of these polymers in solvents ranging from cyclohexane to water, maximizing Asymmetric Catalysis the potential application of these polymers in various media. Liquid Crystals Ó 2011 Elsevier Ltd. All rights reserved. Chiro-optical Materials 1. Introduction further specificity will require their full description as non-linear or helical polycarbodiimides.